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Abstract
Directional dispersal plays a large role in shaping ecological processes in diverse systems such as rivers,

coastlines and vegetation communities. We describe an instability driven by directional dispersal in a spatially

explicit consumer–producer model where spatial patterns emerge in the absence of external environmental

variation. Dispersal of the consumer has both undirected and directed components that are functions of

producer biomass. We demonstrate that directional dispersal is required for the instability, while undirected

diffusive dispersal sets a lower bound to the spatial scale of emerging patterns. Furthermore, instability requires

indirect feedbacks affecting consumer per capita dispersal rates, and not activator–inhibitor dynamics affecting

production and mortality as is described in previous theory. This novel and less-restrictive mechanism for

generating spatial patterns can arise over realistic parameter values, which we explore using an empirically

inspired model and data on stream macroinvertebrates.
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INTRODUCTION

Directional dispersal shapes ecological processes in systems with

flowing dispersal media. Environments such as streams and rivers

(Waters 1972; Williams & Williams 1993), coastlines (Byers & Pringle

2006) and vegetation communities (Levine 2003) experience strong

coupling among spatially separated sites because of the directional

dispersal of individuals and ⁄ or transport of abiotic resources.

Streams and rivers are iconic examples of systems influenced by

directional transport, and many of the conceptual foundations of

stream ecology address the effects of transport by flow (Vannote

et al. 1980; Townsend 1989; Newbold 1992). A variety of stream

organisms drift in the water column (Elliott 1971; Palmer et al.

1996) and respond to the local environmental conditions through

dispersal (Kohler 1985; Winterbottom et al. 1997; Diehl et al. 2000;

Englund et al. 2001; Roll et al. 2005). Accordingly, consumer–

resource interactions over small spatial and temporal scales may be

more greatly influenced by immigration and emigration than by

production and mortality (Fonseca & Hart 1996; Nisbet et al. 1997;

Diehl et al. 2000; Englund et al. 2001; Englund & Hamback 2004;

Roll et al. 2005). As a result, intergenerational food-web dynamics

and responses of these to environmental variation may manifest

strongly only over larger scales, making it difficult to �scale up� the

results of small scale experiments (Cooper et al. 1998; Englund et al.

2001; Woodward & Hildrew 2002). Indeed, there is still a large gap

in our understanding of how spatial variation in population densities

and food-web structure are linked to local dynamics and environ-

mental conditions in streams and rivers (Woodward & Hildrew

2002).

While directionally biased dispersal may obscure consumer–

resource outcomes by spatially separating driver from effect,

consumer–resource theory also suggests that spatial variation can be

generated or exacerbated by demographic feedbacks working in

concert with dispersal (Murray 2003; Malchow et al. 2008). A classic

example is diffusive instability where �random� dispersal can lead to

non-equilibrium spatial variation in consumer and resource popula-

tions, even in the absence of environmental variation (Segel & Jackson

1972). For such patterns to occur, producers must positively affect

their own and consumer densities, while consumers have the opposite

effect. The consumer species must also diffuse much faster than the

resource species. More recently, a second mechanism of dispersal-

driven pattern formation has been investigated focusing on directional

dispersal – advection – rather than diffusion (Rovinsky & Menzinger

1992; Malchow et al. 2008). Under these so-called �flow-induced

instabilities� (or FII�s), the restrictive conditions on movement

differences are somewhat relaxed, but those on producer–consumer

feedbacks are not. Spatial instabilities driven by advection have been

invoked to explain spatial patterns in planktonic food chains

(Malchow et al. 2008), juvenile mussel beds (van de Koppel et al.

2005), and vegetation communities (Sherratt 2005).

Flow-induced instabilities have obvious potential for shaping

ecological dynamics in streams and other flowing environments, as

organisms in these systems express wide variation in dispersal (e.g.

Rader 1997). Feedbacks between consumers and resources often
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manifest at local scales as changes in per capita emigration rates rather

than (or in addition to) changes in production and mortality rates. It

may be possible for these feedbacks – mediated by directional

dispersal – to structure non-equilibrium spatial patterns at larger

spatial and temporal scales. Our ability to predict when these features

might lead to spatial variation could be greatly enhanced by models of

the basic processes – theory that is currently lacking.

Herein, we investigate spatial instability in consumer–resource

models where consumer dispersal has both resource-dependence and

a directional bias. Using a strategic model, we demonstrate that

instability requires both of these features. We then extend our results

to an empirically motivated model that describes dispersal using

easily measured emigration and drift dispersal terms. The novel, less

restrictive mechanism for generating spatial patterns we report has

wide implications for ecological dynamics in systems with biased

transport, which we explore using data on stream macroinverte-

brates.

SPATIAL INSTABILITIES IN A REACTION–DIFFUSION–ADVECTION

PRODUCER–CONSUMER MODEL

Previous theory shows that non-equilibrium spatial patterns can occur

in consumer–resource models, when dispersal is �random� or

directionally biased. We begin by examining the contributions of

these two dispersal types to instability when consumer–resource

interactions alter consumer dispersal rates. We use a reaction–

diffusion–advection (RDA) formalism, which has been used exten-

sively in analyses of diffusive and flow-induced instabilities, allowing

us to build on previous theory.

Consider a resource producer with biomass density P (x, t ) and a

consumer with density C (x, t ) at stream location x and time t with

dynamics described by

@Pðx; tÞ
@t

¼ IP|{z}
production

� f ðPðx; tÞÞC ðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
losses to consumption

@C ðx; tÞ
@t

¼ IC|{z}
recruitment

� mC ðx; tÞ|fflfflfflfflffl{zfflfflfflfflffl}
mortality

� @

@x
½vðPðx; tÞÞC ðx; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

advection

þ @2

@x2
½DðPðx; tÞÞC ðx; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

:

ð1Þ

Streams and other advective systems are often �open� systems (Palmer

et al. 1996), where production can be driven by allochthanous nutrient

supply or recruitment from egg banks laid by adults that reside outside

the system. Thus, both species recruit at constant rates independent of

local density in our model. Consumers reduce producer biomass

through consumption, with functional response f ðPðx; tÞÞ, where

@f ðPÞ=@P>0, and die at a constant per capita rate m.

Producers are assumed immobile and consumers disperse using

both diffusion and advection. Diffusion approximates stochastic

displacement, such as by turbulence or in active response to multiple

unmeasured factors, that lacks a net directional bias. Advection

describes directional components of dispersal in the downstream

direction. Consumers respond to low producer biomass through

increased advection and diffusion rates, i.e. @vðPÞ=@P<0 and

@DðPÞ=@P<0.

Analysis of the spatial instability

Numerical simulations of eq. (1) reveal the presence of spatial

instabilities manifesting as travelling waves moving in the direction of

advection (Fig. 1). These waves represent consumers �chasing�
producers through downstream advection, depleting the trailing edge

of producer waves via consumption. Consumers build up on the

trailing edge of producer waves as a result of density-dependent

dispersal: consumers rapidly emigrate from areas of low producer

biomass and stay in high biomass ones. The aggregation of consumers

in turn opens consumer-free space where producers are replenished.

Extensive simulations suggest that these qualitative spatial patterns are

consistent regardless of specific functional forms used for consump-

tion and dispersal as long as they are constrained as outlined above.

However, whether these patterns form in the first place depends

greatly on parameter values.

Effects of parameters on instability are elucidated using linear

stability analysis; that is, by examining whether small deviations from

a spatially uniform steady state (P*, C* ) grow or decay (Murray 2003).

Deviations Pðx; tÞ ¼ P� þ pðx; tÞ and C ðx; tÞ ¼ C � þ cðx; tÞ that

grow indicate instability and the presence of non-equilibrium spatial

patterns. Progress is facilitated by Fourier analysis, which, when

applied to the spatial dimension x, represents spatial variation in p(x, t )

and c(x, t) as the integral of sinusoids with different spatial frequencies

k,

~pðk; tÞ ¼
Z1
�1

pðx; tÞe�ikxdx and

~cðk; tÞ ¼
Z1
�1

cðx; tÞe�ikxdx: ð2Þ

The spatial frequency k (often referred to as the wavenumber) is

inversely proportional to the spatial wavelength, or spatial scale, over

Figure 1 An example of spatial instabilities that arise in the RDA producer–

consumer model in eq. (1) generated using numerical simulations with periodic

boundary conditions. Producer density P(x, t ) and consumer density C(x, t ) were

calculated using the finite element method and PARDISO direct linear solver in

COMSOL Multiphysics�. The spatial waves shown travel in the direction of

downstream advection at 0.135 units distance ⁄ unit time. Functions are f (P) = rP,

v(P ) = v0exp[ ) vsP ], D(P ) = d0exp[ ) dsP ]; parameter values are IP = 1; r = 3.1;

IC = 0.1; m = 0.1; v0 = 0.2; vs = 1.8; d0 = 0.0005; ds = 0.
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which the sinusoidal component varies. Each spatial frequency

contributes to the overall pattern of spatial variation in the state

variables. In real ecological systems, populations will always deviate

from uniform steady-states with decidedly non-uniform spatial

distributions. Yet those spatial distributions can always be broken

down into components with different spatial frequencies k. Of the

range of spatial frequencies present in producer or consumer

deviations, those frequencies that are unstable will grow, while those

that are stable will decay.

After re-casting eq. (1) into small deviations (ignoring small non-

linear terms) and applying Fourier transforms from eq. (2), the system

takes the form of a pair of linear ordinary differential equations.

Rewritten in vector-matrix form for convenience,

@~n

@t
¼ J~n; where ~n ¼

~p

~c

� �
and

J ¼
�f 0ðP�ÞC � �f ðP�Þ

�v0ðP�ÞC �ik�D0ðP�ÞC �k2 �m � vðP�Þik�DðP�Þk2

� �
:ð3Þ

Equation (3) reveals important generalisations about instability in

the RDA model, which we now explore.

The first major generalisation is that instability depends on the

spatial frequencies k (see Online Supplement S1 in Supporting

Information). The RDA approximation in eq. (3) has eigenvalues

k1;2 ¼ q1;2 þ ix1;2 where q and x are the real and imaginary parts of

k, respectively, and i ¼
ffiffiffiffiffiffi
�1
p

. The system becomes unstable if the real

part q of any eigenvalue becomes greater than zero (Fig. 2), and the

instability involves travelling waves when x is non-zero. Both q and x
are always functions of k, and x is non-zero for k > 0.

The unstable components grow and lead to persistent non-

equilibrium spatial patterns (as in Fig. 1). These take the form of

travelling waves with peaks separated by a distance of approximately
2p

kmax

that proceed downstream at speed
x

kmax

where kmax is the

frequency of the least stable component (the largest positive q).

Non-linear terms ignored in eq. (3) do eventually become large,

causing the waves to cease growing in amplitude and become less

sinusoidal in shape (Fig. 1, Online Supplement S2).

A second major generalisation is that advection is necessary for

instability. The RDA with diffusion and no advection (i.e. D(P* ) > 0,

D ¢(P* ) > 0, v (P* ) = v¢(P* ) = 0) is stable under all parameter

combinations (Murray 2003). With advection, and in the absence of

diffusion (i.e. D(P* ) = D ¢(P* ) = 0), the relationship between k and

q1 mirrors that of many systems exhibiting flow-induced instabilities

(Malchow et al. 2008): q1 becomes positive at some critical wave-

number kv and continues to rise monotonically for all k > kv under

unstable parameter combinations (Fig. 2). Spatially uniform deviations

(k = 0) are always stable (Online Supplement S1). Thus, advection

causes the system to become unstable over all spatial frequencies

higher than kv, meaning that the non-equilibrium patterns generally

occur with small spatial wavelengths.

When advection is combined with diffusion, the RDA model can

still become unstable at sufficiently large kv (Fig. 2). However,

diffusion stabilizes spatial frequencies exceeding a second critical value

kd, yielding a kmax that occurs at the peak of the resulting unimodal

dispersion relation, where kv < kmax < kd. This is because aggrega-

tions are typically smoothed by diffusion as individuals move from

areas of high to low density. Advection does not offer such smoothing

properties and thus provides no mechanism to dampen spatial

variation.

Our final generalisation is that spatial instabilities occur in our

producer–consumer system despite its lacking �activator–inhibitor�
dynamics, a key requirement for traditional diffusive and previously

examined differential flow-induced instabilities to form. Ignoring

terms related to dispersal (i.e. operating on ik or k2 terms), the

Jacobian matrix for a typical activator–inhibitor system has signs

(Murray 2003; Malchow et al. 2008),

J ¼ þ �
þ �

� �
: ð4Þ

Figure 2 Relationship between instability and spatial frequency k (radians ⁄ length) for eq. (3). The real part of the dominant eigenvalue q1 gives the rate at which deviations

from uniform steady state initially grow or decay. In the advection only case, values of q1 are unstable for spatial frequencies larger than kv. In the advection and diffusion case,

spatial frequencies are unstable between kv < k < kd, and the fastest growing spatial frequency is given by kmax. Negative values of x1 (radians ⁄ time) indicate that spatial

patterns manifest as travelling waves. Functional forms and parameter values are as in Fig. 1 with the exception that d0 = 0 in the advection only case.
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The positive signs in the first column reflect producers having

a positive or �activating� effect on their own and their consumer�s
densities through births. The negative signs reflect consumers having

likewise negative or �inhibiting� effects through consumption and

death. In contrast, the signs under the same non-spatial conditions

(v(P* ) = v¢(P* ) = D(P* ) = D ¢(P* ) = 0) in our system are

J ¼ � �
0 �

� �
: ð5Þ

Consumers still have inhibitory effects, but producers no longer

have activating effects in the absence of dispersal. Consumer

�activation� by producers reappears when producer-dependence in

consumer dispersal is added, indicating that this feedback affecting

dispersal rates is required, but not sufficient, for the instability to form

(Supplement S1). We now proceed to explore how producer-

dependent and downstream-biased dispersal drive instability through

parameter studies.

Parameter studies

We limit our analyses to cases with a linear functional response for

consumer grazing,

f ðPÞ ¼ rP ð6Þ
where r is the per capita consumption rate. However, we observe

qualitatively similar dynamics with other functional responses. We

non-dimensionalise the equations by scaling time relative to the aver-

age consumer lifetime m)1, and scaling space relative to the average

distance a consumer in the steady state population disperses down-

stream via advection during its lifetime, i.e. vðP�Þ=m. Consumer and

producer densities are scaled relative to their uniform space steady state

values. Thus, if hats denote scaled (dimensionless) quantities, we define

t̂ ¼ mt ; x̂ ¼ mx=v; k̂ ¼ vk=m; p̂ ¼ p=P�; ĉ ¼ c=C �: ð7Þ
We then define the dimensionless parameter groups

r̂ ¼ rC �

m
; b ¼ �P�v0ðP�Þ

vðP�Þ ; D̂ ¼ mDðP�Þ
½vðP�Þ�2

; d ¼ �mP�D0ðP�Þ
½vðP�Þ�2

:

ð8Þ
The dimensionless form of the Jacobian (eq. 3) is then

Ĵ ¼ ½ �r̂ �r̂
bik̂þ dk̂2 �1� i k̂� D̂k̂2 �; ð9Þ

and the linearised dynamics are controlled by four dimensionless

parameters: the scaled strength of consumption r̂, the strength of

advection sensitivity to producer variation b, a parameter D̂ that

represents the relative contributions of diffusion and advection to an

organism�s average lifetime displacement, and a measure of the

strength of diffusion sensitivity to producer variation, d.

The effects of the controlling parameters on the onset of instability

as well as the spatial scale over which the instability manifests are

shown in Fig. 3. Both advection sensitivity b and scaled consumption

r̂ must be sufficiently large in order for instability to form. In the

simple case of dispersal by advection only (D̂ = d = 0),

(a)

(b)

(c)

(d)

unstable

unstable

unstable

stable

stable

unstable

stable

stable

Figure 3 Effects of parameters on system stability in the RDA model eq. (9). For a given set of parameter values, unstable frequencies are those bounded by critical frequencies

k̂c . The critical spatial frequency k̂c in (a) and (b) is kv. In (c) and (d), the critical spatial frequency k̂c is equal to kv in the lower solid branch and kd in the upper solid branch.

Both are represented by black solid lines (—). The fastest growing spatial frequency k̂max is represented by grey dashed lines (- - -). Parameters are (a) r̂ = 1, D̂ = 0, d = 0; (b)

b = 10, D̂ = 0, d = 0; (c) r̂ = 1, D̂ = 0.01; (d) b = 10, D̂ = 0.01.
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lim
k!1

q1ðkÞ ¼
1

2
ðabsðr� 1þ 2brÞ � r� 1Þ and

k̂v ¼
r̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂b2 þ r̂b� b� 1
p ; ð10Þ

and hence instability occurs when r̂b>1 with lim
k!1

q1ðkÞ ¼ r̂b� 1

(Fig. 3a,b). A positive advection sensitivity b leads to consumers

leaving areas of low producer density at higher per-capita rates than

areas of higher density. The instability arises as downstream con-

sumers slow their advection after encountering high producer patches

while upstream consumers simultaneously move quickly through areas

of low producer biomass. As b increases, consumers become more

sensitive to spatial variation in producer biomass, destabilising lower

frequencies (i.e. longer spatial wavelengths) of perturbation despite

weaker spatial producer gradients at these frequencies (Fig. 3a).

Increasing consumption r̂, when low, promotes instabilities through

maintenance of variation in producer biomass. However, once con-

sumption becomes much stronger, further strengthening tends to

destroy producer variation and increases system stability, especially in

smaller spatial frequencies (Fig. 3b).

Diffusion, via both D̂ and its sensitivity to producers d, increases

the stability of the system (Fig. 3c,d, results for the former are not

shown). As the contribution of diffusion increases, the sensitivity of

the advection contribution required to destabilise the system

increases as well (Fig. 3c). While in the unstable range of b, the

highest unstable spatial frequency k̂d and the maximum unstable

frequency k̂max both reduce with increasing contributions of

diffusion. The lowest unstable frequency k̂v set by advection remains

largely unaffected (Fig. 3c).

Diffusion also restricts the range of k where consumption

destabilizes the system (Fig. 3d). Because consumption r̂ destroys

producer variation when the wavelengths of this variation are very

large or very small – the same scales that are typically smoothed over

by diffusion – the instability only emerges over intermediate values of

r̂ when diffusion is present. As above, diffusion strongly reduces the

values of k̂d and k̂max but not k̂v over most values of consumption

(Fig. 3d). These results reinforce our earlier qualitative generalisations

that it is the advection and producer-dependent dispersal, and not the

diffusion or activator–inhibitor dynamics, which leads to instability in

the RDA model.

INSTABILITIES IN A MODEL OF EMIGRATION AND DRIFT

Our analysis of the RDA model reveals the roles played by advection,

and by producer-dependence in advection rates, in establishing the

spatial instability. We also demonstrated that diffusion, with and

without producer-dependence, enhances stability. However, organ-

isms in streams, rivers and other systems with directional dispersal do

not necessarily exhibit such easily identifiable advection and diffusion

phases of dispersal. Instead, individuals often appear to emigrate from

locations one or more times during a life cycle and drift in the water

column before resettling in a new location (see references in Palmer

et al. 1996; Diehl et al. 2008). We now extend our results from the

RDA model to an empirically motivated model that includes specific

emigration and drift dispersal terms.

Our model is a generalisation of a stream consumer–producer

system analyzed by (Anderson et al. 2008) that uses an integro-differential

equation (IDE) for consumer dynamics,

@Pðx; tÞ
@t

¼ IP|{z}
production

� f ðPðx; tÞÞC ðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
losses to consumption

@C ðx; tÞ
@t

¼ IC|{z}
recruitment

�mC ðx; tÞ|fflfflfflfflffl{zfflfflfflfflffl}
mortality

�EðPðx; tÞÞC ðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
emigration

þ
Z1
�1

EðPðy; tÞÞC ðy; tÞhðx � yÞdy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
immigration

:

ð11Þ

Production, recruitment, consumption and mortality terms are

defined as for eq. (1). Instead of advection and diffusion terms, eq.

(11) assumes organisms emigrate from their current location at a per

capita rate EðPðx; tÞÞ that declines with increasing producer biomass,
@E
@P

<0, and resettle according to the integral immigration term. We

describe the resettlement process in the immigration term using the

dispersal function hðx; yÞ where hðx � yÞ is the proportion of

individuals emigrating from location y that settle instantaneously in

the interval ðx; x þ dxÞ.
We restrict our choice of dispersal functions to probability

distributions that are exponentially bounded in the tails, which

includes many standard probability distributions (e.g. exponential and

Gaussian) but excludes �fat-tailed� distributions. We define LD as the

mean distance travelled per emigration event and M2 as the second

moment,

LD ¼
Z1
�1

uhðuÞdu; M2 ¼
Z1
�1

u2hðuÞdu; and

Z1
�1

hðuÞdu ¼ 1:

ð12Þ
Dispersal distributions for macroinvertebrates in streams and rivers

have been observed possessing downstream skews (i.e. LD > 0)

(e.g. Elliott 1971; Englund & Hamback 2004).

To analyze our empirically motivated IDE model, we follow steps

similar to those outlined for the RDA model to get from eq. (1) to

eq. (9), with consumption also defined by eq. (6). We define ~hðkÞ as

the Fourier transform of the dispersal function h(x , y), which we can

approximate for small values of k without specifying the form of the

kernel itself. Taking the Taylor expansion of ~hðkÞjk¼0 and dropping

terms OðkÞ3 and higher,

~hðkÞ ¼
Z1
�1

hðyÞe�ikydy �
Z1
�1

hðyÞð1� iky � 1

2
k2y2Þdy

¼ 1� ikLD �
1

2
k2M2 ð13Þ

where LD ¼
R1
�1

yhðyÞdy and M2 ¼
R1
�1

y2hðyÞdy.

After linearisation and Fourier transforming the spatial dimension,

we define two forms of the IDE: a �generalized� form that does not

specify the form of consumer emigration, and a �specified� form that

represents consumer emigration explicitly. The generalised emigration

IDE, after the re-parameterisation

t̂ ¼ mt ; x̂ ¼ x=LD; k̂ ¼ kLD; p̂ ¼ p=P�; ĉ ¼ c=C �;

e ¼ EðP�Þ
m

; e0 ¼ E0ðP�ÞP�
m

; r̂ ¼ rC �

m
;

ð14Þ
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has Jacobian

J ¼ �r̂ �r̂
e0ðik̂þ k̂2Þ �1� eðik̂þ k̂2Þ

� �
: ð15Þ

The specified emigration IDE includes the following representation

of consumer emigration,

EðPÞ ¼ e0 expf�aPg ð16Þ
where e0 is the baseline consumer per-capita emigration rate and a is

the sensitivity of emigration to producer biomass. We rescale by

setting

t̂ ¼ mt ; x̂ ¼ x=LD; k̂ ¼ kLD; p̂ ¼ p=P�; ĉ ¼ c=C �;

ê0 ¼
e0

m
; â ¼ aP�; r̂ ¼ rC �

m
;

ð17Þ

which yields

J ¼ �r̂ �r̂
â̂e0 exp½�â�ðik̂þ k̂2Þ �1� ê0 exp½�â�ði k̂þ k̂2Þ

� �
: ð18Þ

While we have attempted to be maximally consistent in our scaling,

it is worth noting that the IDE models have space re-parameterised in

terms of the average downstream distance travelled by consumers per

dispersal event, and not their lifetime advection.

The dependence of the spatial instability on model parameters is

similar between the generalised emigration IDE (Fig. 4a,b) and the

RDA model (Fig. 3c,d). The consumer emigration rate exhibits both

�advection-like� responses (via the i k̂ term) and �diffusion-like�
responses (via the k̂2 term) seen in the RDA model. This is because

the dispersal function h(x , y) affects the consumer spatial distribution

in two ways. Like advection, it displaces the mean location of

emigrants downstream, and like diffusion, it generates variance in

dispersal distances.

We can make explicit the �advective� and �diffusive� components of

dispersal in the IDE representation. By substituting e¢ = b = d and

e ¼ D̂ ¼ 1, we can see the analogy between eqs. (3) and (15) more

clearly. Increasing the emigration sensitivity e¢ destabilizes the system

in a way that is similar to increasing the advection sensitivity b in the

RDA model, despite also operating on the related k̂2 term as d
(Fig. 4a). In contrast, higher average emigration e stabilizes high

frequencies in a manner similar to increasing the contribution of

diffusion to the average displacement distance (Fig. 4a,b). Thus, like

diffusion in the RDA model, the effects of e greatly lower k̂d and k̂max

(Fig. 4a,b) but not k̂v over a large range of other parameter values.

The specified emigration IDE eq. (18) exhibits some special

properties. The baseline emigration rate ê0 and the sensitivity of

emigration a appear in both lower-row elements of eq. (18), meaning

that changes in either parameter behaves in a way similar to concurrently

altering de-stabilizing advection-like and stabilising diffusion-like

processes in the RDA model. The dual, opposing effects of

emigration parameters are quite apparent when changing the

emigration sensitivity parameter â (Fig. 4c). When small, increasing

â de-stabilizes the system and increases the range of unstable

frequencies. When large, increasing â re-stabilizes the system in a way

similar to diffusion-like processes. The baseline emigration rate ê0

de-stabilizes the system when increased which, interestingly, includes a

noticeable expansion of de-stabilized low frequencies. This latter

result arises from an increase in the average scale over which

advection-like processes operate, allowing emigration sensitivity

(a)

(b)

(c)

(d)

stable

stable

stable

stable

unstable

unstable

unstable

unstable

Figure 4 Effects of parameters on system stability in versions of the IDE model. Relationships between parameters and critical frequencies are as in Fig. 3. (a) General

emigration model eq. (15), r̂ = 5; (b) General emigration model eq. (15), e� = 40; (c) Specified emigration model eq. (18), r̂ = 10; (d) Specified emigration model eq. (18),

b = 2.
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(Fig. 4c) and consumption (Fig. 4d) to de-stabilize the system at both

higher and lower frequencies over a range of values. This effect also

means that the fastest growing frequency k̂max is relatively insensitive

to changes in ê0 (Fig. 4c,d).

DISCUSSION

Our goal was to examine the potential for spatial self-organisation in

flowing water environments and other systems with biased transport.

Using a model of an organism with downstream-biased dispersal, we

explored how commonly observed traits of stream organisms

(downstream drift, emigration dependence on resources, strong

consumption control) influence the emergence of an instability that

manifests as �waves� of consumers and producers travelling down-

stream. We demonstrated that instability in our producer–consumer

model does not require traditional �activator–inhibitor� coupling

through births and consumption. Thus, our model elucidates a less-

restrictive mechanism for spatial pattern formation, involving con-

sumer per capita emigration rates that vary with producer biomass,

than is required in previous diffusion and flow-instability models.

Our instability also differs from other spatial pattern formation

mechanisms that fall outside of traditional diffusive or FII ones.

Because instability in our system requires the combination of

consumption, producer-driven rates of consumer dispersal, and

directional bias, it differs from other behaviourally driven spatial

instability mechanisms that require movements that respond to

conspecifics – rather than resources – to form (e.g. Lewis 1994; van de

Koppel et al. 2008). Another large class of pattern formation

mechanisms require the potential for unstable homogenous-space

dynamics as a necessary condition (e.g. Gurney & Veitch 2000 and

references therein; Murray 2003; Malchow et al. 2008). These

mechanisms are also not relevant here as equilibria in our system

are always locally stable in both the absence of dispersal and to

uniform global deviations from steady state (i.e. when k = 0) when

dispersal is included. The local stability is due to the combination of

open recruitment and a linear functional response describing

consumption; we do anticipate that the addition of locally destabilizing

recruitment or consumption terms (e.g. Nisbet et al. 1997) could

interact with the mechanism we describe to yield quite rich dynamics.

Our results can be related to other, more general frameworks of

endogenous spatial pattern formation. Rietkerk & Van de Koppel

(2008) propose that a fundamental requirement for spatial instabilities

is the co-occurrence of positive local reinforcement with long-range

inhibition. In our system, positive local reinforcement occurs as a

result of consumer per-capita emigration rates declining in concen-

trated areas of high producer biomass. Consumption creates areas of

low producer biomass behind and ahead of producer concentrations.

These areas in turn generate long-range inhibition when consumers

quickly disperse through them as a result of high per-capita emigration

rates coupled with directional dispersal.

Empirical implications

The strength of consumption, the maximum consumer emigration

rate and the sensitivity of emigration to producer biomass are critical

parameters in determining the existence and scale of instability. For

the specified emigration IDE, it is possible to �guesstimate� plausible

ranges of parameters from literature sources. We use data from a

meta-analysis of periphyton control by grazers across aquatic systems

to estimate consumption parameters (Hillebrand 2009) as well as from

a set of open grazing experiments to estimate emigration parameters

(Baetis mayflies: Kohler 1985; Forrester et al. 1999; Roll et al. (2005);

multiple taxa: Diehl et al. 2008). Parameters are given in Table 1 and

details of parameter estimation are provided in Online Supple-

ment S3. Relating the parameters in Table 1 to the dimensionless

parameters used in parameter studies requires dividing rC* and e0 by

the consumer mortality rate m. Such rates likely vary widely from

system to system depending on factors such as generation time,

predation intensity, competition and disease. For example, Diehl et al.

assumed m = 0.01 day)1 (average lifespan = 100 days) based on the

overwintering life histories of their study organisms, whereas much

higher mortality rates of 0.1 day)1 (average lifespan = 10 days) are

probably not uncommon.

To examine the model behaviour under realistic parameter values,

we pick a set of typical values from Table 1, rC* = 0.23 day)1, and

aP* = 2.0, and set mortality to m = 0.01 day)1, which yields re-scaled

consumption r̂ = 23. From Fig. 4d, instability occurs when

100 < ê0 < 150; if we set this value to be ê0 = 135, the selected

value of aP* yields �eG = 0.183 day)1. This average per capita

emigration rate is on the high end of our estimated range, as only

four of seventeen species studied by Diehl et al. (2008) had values

nearly equal or larger. However, reducing consumption to a less than

typical value increases the range of emigration yielding instability. For

example, setting r̂ = 5 (rC* = 0.05 day)1) means the system

becomes unstable when ê0 = 59. This corresponds to

�eG = 0.08 day)1, which eight of seventeen species in Diehl et al.

exceed. In contrast, setting mortality to m = 0.1 day)1 constrains our

estimates of ê0 < 6, essentially making instability impossible under the

estimated ranges of other parameters. In total, these results suggest

that stream systems where consumers have typical or lower than

typical consumption rates, high movement potential and ⁄ or long

lifespans are most likely to exhibit instability. Importantly, while our

parameterisation exercise is admittedly crude, it does demonstrate that

our described spatial instability is possible given realistic values.

As our instability is largely driven by dispersal away from areas of

low resource biomass, the resulting spatial scale of variation is related

to the scales over which transport processes operate. This result has

generally been observed in other systems driven by flow-induced

instabilities. For example, vegetation patterns in arid landscapes

appear with periodicities in the order of tens of metres that are set by

the downhill transport of water (Malchow et al. 2008). Aquatic

ecosystems as diverse as tidal mudflats, coral reefs, ocean plankton

and coastal wetlands show patterning from metres to kilometres

Table 1 Estimates for parameters or combinations of parameters from the specified

IDE model eqs. (11) with consumption and emigration functions defined by eqs. (6)

and (16) respectively

Parameter or

combination

estimated Value Study

rC* 0–132 day)1; typical

value of �0.23 day)1

Hillebrand (2009)

e0 �0.6 day)1 Kohler (1985)

e0 �0.03–0.09 day)1 Forrester et al. (1999), Roll et al. (2005)

aP* �0.29–17 Kohler (1985)

aP* �0.029–2.8 Forrester et al. (1999), Roll et al. (2005)

�eG ¼ e0 expð�aP�Þ 0.002–0.436 day)1 Diehl et al. (2008)
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depending on the scale over which flow transports nutrients or

primary producers (Rietkerk & Van de Koppel 2008).

In our river model, instabilities are always much larger than the

average length that consumers are transported in the drift during an

emigration event (LD). Lengths of drift events by aquatic macro-

invertebrates have been observed to be anywhere from half a metre to

20 m or more, depending on the organism and flow velocities, with

typical values being between 5 m and 10 m in the lower order streams

(e.g. Elliott 1971). From our example above, typical values of

ê0 = 135, r̂ = 23 and aP* = 2.0 yields a k̂max » 0.3 which translates

into a spatial wavelength in the order of 100–200 m assuming typical

drift distances, LD, of around 10 m. This would place the scale over

which instabilities will appear at the level of reaches or even whole

rivers. Large-scale variation in consumers and resources could

therefore be quite divergent from local dynamics, making our results

consistent with the argument by Woodward & Hildrew (2002) and

others that �intergenerational� components of food webs will be most

apparent, and should be examined, at the landscape scale. However,

we caution that nutrients (Newbold 1992), primary producers

(Simpson et al. 2008) and other organisms are also subjected to

redistribution via directed dispersal, which could lead to additional

instabilities at different scales. Understanding transport processes of

these components is key to discerning the effects of how locally

observed interactions manifest at other scales.

Spatial patterns emerging from our instability may be difficult to

discern empirically unless they are specifically sought after over scales

larger than transport processes operate. A data series of longitudinal

samples, for example, might show a power spectrum with a peak near

kmax that should generally be larger than other periodic river features

(e.g. riffles and pools). In addition, kmax could be predicted using small

scale parameterisation experiments. Although coarser than our

recommendation, recent multi-scale studies have found stronger

negative correlations between consumers and resources – and

resource suppression generally – at the riffle to reach scale compared

with microhabitat or laboratory scales (Feminella & Hawkins 1995;

Wellnitz et al. 2001; Taylor et al. 2002; Doi & Katano 2008). Large-

scale (>2 km) suppression of resource biomass was also observed to

strengthen as caddisfly consumers invaded downstream-stream

reaches in a wave-like fashion following initial upstream colonisation

(Katano et al. 2007) similar to dynamics observed in our model. This

wave traversed downstream reaches over the course of a season.

Given that wave speeds in our model are proportional to the average

consumer-lifetime, the observations in Katano et al. (2007) are roughly

consistent with temporal and spatial dynamics predicted by our

parameter estimates, though, of course, an invasion wave need not be

driven by the same mechanisms that excite waves in an established

population. Suppression of filamentous microalgae by the caddisflies

coincided with increases in small diatoms, implying that travelling

wave instabilities could create refuges from competition or have other

cascading community-wide effects that vary spatially and temporally.

We have shown that instability can generate spatial patterns within

given realistic parameter values. Using a more restricted variant of eq.

(12), we have also shown that strong transient spatial patterns can

occur even when equilibria are stable (Anderson et al. 2008). This

suggests that endogenous spatial pattern formation could occur over

a wider range of parameters than predicted by our stability analysis. In

the transition to instability, we found that transient dynamics exhibit

a scale-dependence similar to the fully unstable system. In other

words, a stable consumer–producer system may exhibit transient

waves at spatial scales similar to those predicted in unstable parameter

regions. Given the highly temporally variable nature of many flowing

systems, it could be that transient patterns – growth of deviations near

steady state in stable and unstable systems – are more empirically

discernible than the persistent patterns that take many time steps to

finalise (Supplement S2). Regardless, both persistent and transient

spatial patterning add to the growing bestiary of spatial dynamics

observed in recent theory of flowing environments (e.g. Speirs &

Gurney 2001; Levine 2003; Lutscher et al. 2005, 2007; Pachepsky et al.

2005; Anderson et al. 2006; Malchow et al. 2008), which provides a

powerful toolbox for unravelling the causes and consequences of

spatial variation.
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