
Physics Letters A 375 (2011) 3986–3992
Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Target-oriented chaos control

Justine Dattani a,b, Jack C.H. Blake a, Frank M. Hilker a,∗
a Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
b Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 April 2011
Received in revised form 2 August 2011
Accepted 3 August 2011
Available online 21 September 2011
Communicated by C.R. Doering

Keywords:
Chaos control
One-dimensional map
Linear feedback
Bifurcation
Population dynamics

Designing intervention methods to control chaotic behavior in dynamical systems remains a challeng-
ing problem, in particular for systems that are difficult to access or to measure. We propose a simple,
intuitive technique that modifies the values of the state variables directly toward a certain target. The
intervention takes into account the difference to the target value, and is a combination of traditional
proportional feedback and constant feedback methods. It proves particularly useful when the target cor-
responds to the equilibrium of the uncontrolled system, and is available or can be estimated from expert
knowledge (e.g. in biology and economy).

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Controlling chaos is an active field of research [1–5] that has led
to the development of subtle control approaches which have been
successfully applied in areas as diverse as physics [6], engineer-
ing [7], chemistry [8], medicine [9,10] and ecology [11–14]. Many
systems, however, are difficult to control with existing methods in
the sense that system parameters cannot be accessed or precisely
measured, the system equations are unknown, or interventions are
costly or only occasionally possible. This has prompted the need
for even simpler and more robust control approaches [15,14,16,
5]. Here, we propose such a method that is able to stabilize the
system toward a certain target level over a wide range of values
of the control parameter and, in addition, is more efficient in the
long-run than other approaches.

The underlying idea of our method is rather simple: at each
time-step, the control applies modifications directly to the state
variable and takes into account the difference to the desired target
level. This is a much more “target-oriented” approach than classi-
cal constant feedback (CF) [12,17–19], proportional feedback (PF)
[20,21,5] or prediction-based control (PBC) [34,35] methods. Their
control output is respectively constant or proportional to the state
variable or takes into account the difference to the predicted dy-
namics. In particular, they do not take into account the desired
target level of the control.
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In the following, we devise our target-oriented approach on the
basis of unimodal maps, which are classical prototypes of sim-
ple models being able to generate chaotic behavior [11,22]. They
also have a clear biological interpretation as describing the dynam-
ics of populations with non-overlapping generations [11]. More-
over, discrete-time maps arise naturally as return maps of higher-
dimensional systems and can therefore be seen as simplified de-
scriptions of more complicated systems [23]. For example, they
have been shown to fit well complex time-series data originating
from predator–prey systems or the spread of measles epidemics
[24,25].

2. The method of target-oriented control (TOC)

Consider a map Nt+1 = f (Nt) that displays chaotic dynamics.
Let Nt be the size of the state variable at time-step t . For simplic-
ity, we will assume the variable is a population size, each time-
step being a generation, although this same method could apply to
any chaotic system, including for example magnetoelastic ribbons,
diode resonators, chaotic lasers, particle accelerators, telecommu-
nication, cardiac rhythms or economic markets [6,26–33].

Our aim is to introduce an intervention that induces stability
over a large range of parameter values. We do this by using the
intuitive approach of fixing a desired target value, T , and intro-
ducing individuals if the population size is below the target and
removing individuals if it is above. The number we introduce or
remove is proportional to the difference between the population
and the target. Thus, the intervention involves

I(N) := c(T − N)
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individuals, a value which we will refer to as the intervention.
c > 0 is a proportionality parameter that we may choose, and will
refer to simply as the control. Thus the greater the value we choose
for the control c, the greater the intervention will be at each time-
step. With this intervention at each time-step pre-reproduction our
population will follow the model

Nt+1 = f
(
Nt + I(Nt)

) = f
(
cT + (1 − c)Nt

)
.

For certain parameter values this model can predict negative val-
ues for the population size, which we interpret as extinction.
When this happens we therefore set the population size to be zero.

If the target corresponds to an unstable fixed point of the un-
controlled system, i.e. T = N∗ with N∗ = f (N∗) and | f ′(N∗)| > 1,
one can show that stabilization is possible if the control parameter
is chosen from the range

1 − 1

| f ′(N∗)| < c < 1 + 1

| f ′(N∗)| . (1)

More specifically, due to the assumption of chaotic dynamics in
the absence of intervention, we can assume that N∗ is oscillatorily
unstable in the uncontrolled system, i.e. f ′(N∗) < −1. Stabilization
is then achieved via a period-halving (flip) bifurcation at c = 1 −

1
| f ′(N∗)| .

Condition (1) guarantees local stability, but there may be mul-
tiple attractors in the controlled system (see the following section)
so that the target is not necessarily globally stable. Note that the
parameter range (1) facilitating stabilization is an interval about 1
and that it always exists.

The target-oriented control scheme bears some similarities to
the nonlinear feedback control method

Nt+1 = f (Nt) − c
(

f (Nt) − Nt
)
, c ∈ [0,1]. (2)

This is the “optimal control technique” proposed in [34, Sec-
tion III]; for recent results and generalizations see [35]. We will
refer to this method as prediction-based control (PBC) as any inter-
vention requires knowledge of the future state of the system. By
contrast, our approach aims to steer the system directly toward
the desired state, which is why we refer to it as target-oriented
control (TOC). Please note that this is different from the method of
targeting [36].

In the next section, we focus on the case that the target is
the unstable fixed point of the uncontrolled system, as this seems
like the most natural choice. In the subsequent section, we investi-
gate arbitrary target values. By way of example, we will apply our
method to the exponential map (also known as the Ricker model):

Nt+1 = f (Nt) = Nter(1−Nt), (3)

where r is the reproduction parameter. This model exhibits a cas-
cade of period doublings as r increases, until it demonstrates
mostly chaotic dynamics when r > 2.692 [11]. We consider only
the case when the uncontrolled system is chaotic as this is our
topic of interest.

3. Targeting the original fixed point

In this section, the target of our intervention is the non-trivial
fixed point, which has been scaled to one. Biologically speaking, it
corresponds to the carrying capacity, which is the maximum pop-
ulation level naturally sustained by the environment. Hence with
intervention, the dynamics are described by:

Nt+1 = f
(
Nt + I(Nt)

)

= (
Nt + I(Nt)

)
er(1−(Nt+I(Nt ))), (4)

where I(Nt) = c(1 − Nt).
Fig. 1. (Color online.) Bifurcation diagram for model (4) with varying c. The bold
blue lines indicate stable fixed points, the crossed red lines indicate unstable fixed
points, and the black dots show periodic and chaotic attractors. The bifurcation
points are indicated: PH = period halving, SN = saddle-node, TC = transcritical,
PD = period doubling and BC = boundary crisis. Parameter value: r = 3.

The steady states of the model with intervention (4), their re-
gions of stability and the bifurcation points are shown in Fig. 1.
First, we can see that as c increases from c = 0 to cPH we
achieve stabilization via a cascade of period halvings to a fixed
point, which remains constant at the carrying capacity 1. We shall
call this fixed point N∗

1 . This implies that once a population has
reached the maximum level that the environment can support, it
remains at this level.

N∗
1 is stable for cPH = r−2

r−1 < c < r
r−1 =: cTC , cf. condition (1),

which is a relatively large parameter range (Fig. 1). In practice,
an intervention strategy will be subject to (natural) variations and
noise in other parameters as well, such as the growth rate. A two-
parameter bifurcation diagram reveals that the stability range is
quite robust for realistic parameter values (see the electronic sup-
plementary material). This is important because it may not be
possible to control or measure them precisely in a natural envi-
ronment.

Second, at a critical value of the control cSN , there emerge two
more fixed points at a saddle-node bifurcation. We label the lower
and higher points N∗− and N∗+ , respectively. Initially both are above
the carrying capacity, however once c increases beyond cTC , the
lower fixed point drops below the carrying capacity and tends to-
ward zero for large c. cTC is the value of c corresponding to a
transcritical bifurcation, where N∗

1 and N∗− exchange stability.
For values of the control between cSN and cPD , the higher fixed

point N∗+ is stable and we have bistability. Whether the population
size is attracted to the higher fixed point or the lower fixed point
depends on the initial condition. This means that it is theoretically
possible to maintain the population at N∗+ , a size greater than the
carrying capacity of the system. Although this may appear counter-
intuitive, it can be explained by the ecological hydra effect [37–39,
5], in analogy to the mythological beast that grows two new heads
for every one lost. Our intervention method renders this possible
because at each generation we remove c(Nt − 1) individuals from
large populations. This reduces overcompensatory effects due to
intra-specific competition between individuals. That is, individuals
are free to flourish and the population can grow in number.

Finally cPD is a period-doubling bifurcation point, after which
N∗+ is no longer stable and we observe a cascade of period dou-
blings toward chaos. However, at cBC the chaotic attractor suddenly
disappears. This happens when the attractor collides with the fixed



3988 J. Dattani et al. / Physics Letters A 375 (2011) 3986–3992
Fig. 2. (Color online.) Cobweb diagram of model (4) showing transient chaos. Iterations are initially in the basin of the chaotic attractor that existed before the boundary
crisis but eventually stray below N∗

1 and are attracted down to N∗− . Stable and unstable steady states are indicated with black and white circles respectively, for the case
r = 3 and c = 1.65.

Fig. 3. (Color online.) Total cost incurred over 100 generations, where the cost at generation t is defined as |I(Nt )| := |c(1 − Nt )|, averaged across initial population values
between 1 and 2. Green/light gray regions indicate the proportion of the intervention that was negative for those values of the control c, i.e. where the intervention at
each generation involved the removal of individuals, and red/dark gray regions indicate the proportion of the intervention that was positive, so required the addition of
individuals. The arrows indicate which stable fixed point that region of the graph is stabilizing to; recall initial values are between 1 and 2. The irregularities present on the
upper boundary of the green/light grey region for c close to 1.6 are caused by transient chaotic behavior for early generations. When the cost is instead averaged across initial
population values between 0 and 1, the graph obtained is the same, but without the large green/light gray hump seen here for the values of c where the model displays
bistability. This is because the population size is then attracted down to N∗− , requiring the addition of individuals. Here we have used r = 3.
point N∗
1 (cf. Fig. 1) and is known as a boundary crisis. Fig. 2 illus-

trates the cause of this behavior. As the value of c approaches cBC ,
iterates of initial values close to N∗+ fluctuate in widening ranges.
Beyond cBC the range is wide enough to include 1, so after some
transient behavior iterations can stray into the basin of attraction
for N∗− . This causes the orbit to be attracted down to N∗− , thus
ending the chaotic dynamics.

Transient chaos prior to stabilization is undesirable in a practi-
cal sense, because it increases effort considerations and lengthens
the time to control, which is our ultimate aim. We can compare
cost and effort for different control strategies, i.e. different choices
of the control c, by defining the cost per generation as the absolute
value of the intervention, and summing these over a fixed number
of generations. Fig. 3 shows the results over 100 generations for
the target-oriented approach.

We can see that stabilization to the carrying capacity N∗
1 re-

quires very little intervention in the long-term for cPH < c < cSN .
This is because I(Nt) approaches zero as the system approaches
the target. Choosing c = 1 requires the least intervention in the
long-term. This is somehow trivial because the intervention steers
the system to the fixed point where it will remain in a determinis-
tic system. Nevertheless, choosing c ≈ 1 seems an optimal strategy
for robust and efficient stabilization.

For comparison, Fig. 4 shows the effort required by three other
control methods. First, consider PF where Nt+1 = f (cNt) and c ∈ R.
Stabilization to a fixed point requires the control parameter to be
reduced from c = 1 (no control) to at least c = 0.4. This incurs a
cost of 160 (Fig. 4(a)). Second, consider CF where Nt+1 = f (Nt)+ c
and c ∈ R. Stabilization requires the control parameter to be in-
creased from c = 0 (no control) to at least c = 0.9, causing a cost
of at least 100 (Fig. 4(b)). By contrast, with the target-oriented ap-
proach we have stabilization over a wide range of control values
(0.6 � c � 1.4) for virtually diminishing costs (Fig. 3). This feature
is shared by the PBC method (2), which is even more efficient for
smaller values of c, but more costly close to c ≈ 1 (Fig. 4(c)).

Theoretically, one may wish to stabilize the system to one of
the alternative fixed points, i.e. N∗+ or N∗− rather than to the origi-
nal fixed point N∗

1 . Forcing the system to N∗− may be both difficult
and costly to implement since it requires augmentation at every
generation. Much care would also be required to measure param-
eters and state variables with precision, to prevent extinction of
the population which is rendered more probable since we are
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Fig. 4. (Color online.) Total costs and superimposed bifurcation diagrams for (a) the proportional feedback (PF) method, (b) the constant feedback (CF) method and
(c) prediction-based control (PBC). The costs are incurred over 100 generations as in Fig. 3, with green/light gray regions indicating negative interventions (i.e. reduction
of the state variable) and red/dark gray regions indicating positive interventions (i.e. augmentation of the state variable). The bifurcation diagrams in black show the orbital
attractors. (a) In the PF method c > 1 corresponds to a proportional increase in the state variable and c < 1 to a proportional decrease in the state variable. (b) In the CF
method c > 0 corresponds to positive constant feedback and c < 0 to a negative constant feedback. Note that for too large a negative constant feedback (c � −0.05), the
state variable becomes negative, i.e. biological populations become extinct. This happens when there are more individuals removed than there actually are [18]. (c) PBC is
defined for c ∈ [0,1]. For c > 1, the system diverges, i.e. tends to infinity or takes negative values, depending on the initial condition. Parameter value: r = 3.
essentially maintaining the population size at an artificially low
level. The accurate measurements required may not be possible
should noise exist in the system.
Whilst stabilization to N∗+ requires a considerable amount of ef-
fort to reduce the state variable at each generation (the green/light
gray hump in Fig. 3 between cSN and cBC), it may open up the way
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Fig. 5. (Color online.) Bifurcation diagrams for target values other than the carrying capacity. (a) Target smaller than the carrying capacity, T = 0.7, (b) target larger than the
carrying capacity, T = 1.3. Bold blue lines represent stable fixed points and crossed red lines unstable fixed points. Black dots show asymptotic values arising from regular
cycles or chaos. Parameter value: r = 3.
to new possibilities. In the population context, the removed indi-
viduals could be sold to third parties who may require the species,
e.g. for restocking programs, medical research purposes or sterile
insect release techniques for biological control of pest species. This
means that the strategy to stabilize the population to N∗+ has the
potential to be extremely profitable.

In the case T = 1, N∗+ is only stable for a relatively small range
of values of the control c where we observe bistability in the sys-
tem. This could be problematic should we wish to maintain the
population size at the N∗+ value in a natural environment; slight
perturbations or environmental noise could push the population
level out of the basin of attraction of N∗+ and into that of N∗

1 or
N∗− , depending on the value of c being used (see Fig. 1). The con-
ditions on the noise variance for this to take place are derived in
the electronic supplementary material.

4. Arbitrary target values

The analysis in the previous section is for the case where the
targeted intervention is in relation to the carrying capacity (T = 1)
of the system. Here we investigate the scenario when the target is
chosen differently. That is, the intervention reads

I(Nt) = c(T − Nt) (5)
with T > 0 and T �= 1. We distinguish two cases, one where the
target is smaller and one where the target is larger than the origi-
nal fixed point. Fig. 5 shows the results for T = 0.7 and T = 1.3.

4.1. Target T = 0.7

We see a region of stability between ranges of c for which the
single steady state is unstable. Depending on the control c chosen,
the population size corresponding to the steady fixed point takes
values anywhere between about 1.2 and just below 2.5. Thus it is
theoretically possible to stabilize the population to any value in
this range, whereas in the case where we target to the carrying
capacity, a stable steady state at a population size greater than
the carrying capacity only appears for a very small range of the
control c.

The fact that, for the case where the target value is lower than
the carrying capacity, the steady states appear at population values
greater than the carrying capacity is again an example of the hydra
effect. In other words, we observe greater population sizes when
removing c(Nt − 0.7) individuals, as this decreases the amount of
intra-specific competition that would normally regulate population
size.

Note that there is no bistability and consequently no bound-
ary crisis for larger values of c. Instead, the system exhibits period



J. Dattani et al. / Physics Letters A 375 (2011) 3986–3992 3991
doubling to chaos, followed by regions of periodic oscillations of
low order.

4.2. Target T = 1.3

Conversely, targeting a value greater than the carrying capac-
ity leads to stable fixed points corresponding to population sizes
smaller than the carrying capacity. This is because here the inter-
vention requires that we add c(1.3 − Nt) individuals, more individ-
uals than when targeting the carrying capacity. Thus at each gen-
eration we artificially increase the amount of intra-specific compe-
tition between the members of the population, and the numbers
decrease. This is effectively a demonstration of behavior opposite
to the hydra effect.

This intervention strategy, which enables stabilization to almost
any population size less than the carrying capacity, has applica-
tion where the suppression of a population is desired. For example,
this may be relevant for pest species and invasive alien species.
Fig. 5(b) suggests that such populations could be suppressed to
any size smaller than the carrying capacity with this intervention
method, assuming that without intervention the population is de-
scribed by the Ricker map.

Similarly to the case T = 1, but unlike the case T > 1, a saddle-
node bifurcation point appears and so there is a small range of
control c for which we have bistability, followed by a period dou-
bling bifurcation point and a boundary crisis.

5. Discussion and conclusions

The target-oriented control approach proves particularly useful
when the target coincides with the fixed point of the uncontrolled
system that we wish to stabilize. In fact, choosing the original fixed
point as a target transpires naturally in many applications. For bi-
ological populations, the fixed point corresponds to the carrying
capacity and can be considered as the desirable state. In chaotic
lasers, as another example, the transition to chaos is usually from
a known steady state [40].

Target-oriented control has three main advantages over propor-
tional and constant feedback methods that lack a similar ‘steering
component’. First, stabilization to the desired state takes place not
only for a single, particular control value (as in PF and CF con-
trol, see the bifurcation diagram in Fig. 4(a, b)) but for a wide
range of values (see Fig. 1). Hence, the target-oriented approach to
stabilization is robust over a considerably wider range of control
values. Second, the effort required for stabilization is considerably
less, which makes target-oriented control more efficient. Third, in
practice it may not be clear how to choose the control parameter
for the PF and CF method. There are theoretical results that dis-
close how to choose the control parameter [19,5], but they rely
on knowing the underlying equations. Target-oriented control re-
quires knowledge of only the fixed point, which may be gained
from other sources or estimated by experts.

Target-oriented control has many common features with pre-
diction-based control, most notably a strikingly similar pattern of
efficiency (compare Figs. 3 and 4) and that stabilization to the
fixed point takes place over a wide range of control parameters.
PBC turns out to be advantageous for smaller values of the con-
trol parameter, as stabilization is attained for c > (r − 2)/r, while
target-oriented control requires c > (r − 2)/(r − 1). Moreover, in-
terventions are more efficient. However, for larger values of the
control parameter (around c ≈ 1 where control is most robust),
PBC is slightly more costly.

In comparison with prediction-based control, the advantage of
TOC is that it only requires the target but does not need to be
‘predictive’ in the sense of knowing the underlying system dynam-
ics. Liz and Franco [35] have pointed out that the model equa-
tion can be estimated when good census data of a population are
available. However, such data would need to be based on obser-
vations over many generations, which is relatively rare in ecology
except for some examples from fisheries or lab experiments [13].
Furthermore, it is inherently difficult to observe and therefore to
reconstruct the stock–recruitment map at small population den-
sities. By contrast, estimating the carrying capacity as a target for
our control method appears comparably easy. Determining the car-
rying capacity from field data certainly requires less data, even if
the population is cyclic [41], and there are a number of methods
in place to estimate the carrying capacity utilizing other available
data, e.g. [42,43]. Furthermore, many ecologists and resource man-
agers have a good intuition about the carrying capacity, and this
sort of ‘expert knowledge’ may be a valuable resource in deter-
mining the target value.

If the target does not coincide with the original fixed point,
stabilization is still possible over a wide parameter range, but the
system tends to depart from the desired value. Similarly to the PF
and CF method [19,5], there exists a control value for which the
target can be met—to find this control value may not be straight-
forward, however. Numerics suggest that for targets less than the
carrying capacity, the system stabilizes to values greater than the
carrying capacity. By contrast, for targets greater than the carrying
capacity, the steady state takes values below the carrying capacity.
It appears that these intervention strategies have the ability to sta-
bilize the system to almost any desired value (from almost zero up
to approximately two and a half times the carrying capacity in the
case of Fig. 5). This could be used to achieve large (or small) stable
values that were not possible in the uncontrolled system. The PF
method has a similar feature (as was rigorously proven in [5]). This
fact is not surprising because the TOC method with target T = 0 is
precisely the PF method Nt+1 = f ((1 − c)Nt). So, in some sense,
the TOC method inherits this characteristic for small values of the
target T .

The target-oriented approach is effectively a linear feedback
method and can thus be seen as a combination of constant and
proportional feedback methods. Note that, in contrast to standard
CF and PF control, the intervention in our method can both be
negative or positive, making our approach in general more effi-
cient and versatile. This is illustrated in Fig. 3, where the system
can be both diminished and augmented for a given control value.
In contrast, PF and CF control methods are restricted to only one
form of intervention (cf. Fig. 4). Obviously, target-oriented control
programmes require the capability to reduce (e.g. by culling, trap-
ping or biological and chemical agents) as well as to increase the
population (e.g. by releasing stocked individuals, opening corridors
from neighboring habitats or increasing refuges).

Similarly, the target-oriented method can be regarded as a gen-
eralization of simple limiter control [44,32,31]. Limiters apply a
thresholding algorithm and are well known for their combination
of stabilization and targeting, which significantly speeds up the
process of forcing the trajectory to its desired aim. However, for
certain limiters this method can be relatively costly in terms of in-
tervention frequency and magnitude, and the stable fixed points
that emerge are always smaller than the carrying capacity. The
target-oriented approach uses not only thresholding from one side,
but also augmentation toward the desired state from the other
side. That is, we replace the ‘limiter’ by a more approachable tar-
get.

The initial cost of intervention, i.e. the control signal, may be
large in target-oriented control. For many systems, however, occa-
sional but substantial interventions are more realistic as well as
practical. For example, populations in remote or difficult-to-access
ecological systems can only be managed in occasional, expen-
sive and labor-intensive field campaigns, or during certain seasons
in the year [15,14,16,5]. In the long-term, however, the target-
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oriented approach to the fixed point requires only little effort and
is highly efficient. This is because interventions are in relation to
the target—rather than simply adding/removing a fixed amount or
proportion, as for constant and proportional feedback methods re-
spectively.

The results reported here are not confined to the exponential
Ricker model; robust stabilization is also possible for other well-
known maps. The corresponding bifurcation diagrams are strik-
ingly similar (electronic supplementary material). This is a pleasing
characteristic of this strategy and is in contrast for example to
constant negative feedback (e.g. emigration models [18]), which
simplify dynamics of the Ricker model for certain parameter val-
ues but not for the quadratic model or density-dependent emigra-
tion.

Recent experiments in the lab have demonstrated that inter-
ventions in biological populations [13,45], electrical systems, lasers
and chemical reactions [27,28,8] can successfully control observed
chaotic oscillations. Note that even in large-scale ecological field
experiments, manipulations were able to reduce population fluctu-
ations [46,47]. The intuitive nature of the target-oriented control
proposed here and its effectiveness in controlling chaotic behavior
suggest that it may prove useful in regulating irregular oscilla-
tions, particularly in disciplines such as ecology where interven-
tions toward to an easily identifiable target are applicable. Similar
prospects may exist, for instance, in fields like epidemiology, re-
source management or economy.
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Appendix A. Supplementary material

See electronic supplementary material for (i) a two-parameter
bifurcation diagram; (ii) the derivation of conditions on the noise
variance for stochastic attractor switching to occur; and (iii) alter-
native population maps.

Supplementary material related to this Letter can be found on-
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