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a b s t r a c t 

Many ecological systems exhibit tipping points such that they suddenly shift from one 

state to another. These shifts can be devastating from an ecological point of view, and ad- 

ditionally have severe implications for the socio-economic system. They can be caused by 

overcritical perturbations of the state variables such as external shocks, disease emergence, 

or species removal. It is therefore important to be able to quantify the tipping points. Here 

we present a study of the tipping points by considering the basins of attraction of the 

stable equilibrium points. We address the question of finding the tipping points that lie 

on the separatrix surface, which partitions the space of system trajectories. We present 

an algorithm that reconstructs the separatrix by using a Moving Least Squares approxi- 

mant based on radial basis functions. The algorithm is applied to an eco-epidemiological 

model of pack hunting predators that suffer disease infection. Our analysis reveals that 

strong hunting cooperation considerably promotes the survival of predators and renders 

the predators resilient to perturbations. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Many ecosystems can be found in one of several possible alternative stable states [6,25,27,28,33,36,38] . Consequently,

such ecosystems can shift abruptly from one state to another—a phenomenon also known as ecological regime shift. Well-

known examples include shifts from clear to turbid waters [10] , from grassland to shrubland [34] , the collapse of fisheries

[32] , and the degradation of coral reefs [30] . As regime shifts often imply catastrophic consequences for the ecosystem,

failure to recognize alternative stable states or wrong predictions of the threshold points between them can turn out not

only as a surprise, but also costly. 

Regime shifts can be triggered by perturbations of the state variables or by changing parameters [6,29,35] . In the latter

case, environmental drivers typically lead to the appearance (or disappearance) of alternative stable states and thus cause

sudden shifts. In the former case, the ecosystem is already multistable, and an overcritical disturbance of the state variables

shifts the system from the basin of attraction of one stable state to the basin of attraction of another stable state. The basins

of attraction are separated by a separatrix, which corresponds to threshold values of the state variables, also called tipping

points. 
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In a simple system with one state variable only, the tipping point corresponds to the unstable equilibrium that separates

two stable steady states. However, in higher dimensional systems, information about the separatrix is needed. In particular,

the tipping point of a certain state variable is not a single value for a given set of parameters anymore, but it depends on

the values of the other state variables as the separatrix is a higher dimensional object. 

Knowledge of the existence and location of tipping points is fundamental for understanding and managing ecosystems

[9,10,23,36] . Yet, theoretical ecology rarely addresses the identification of tipping points in higher dimensional systems.

There is a need of methods that help in accomplishing this task. In this paper, we provide a numerical tool to locate the

tipping points of a higher dimensional system. The idea is to approximate the surface that partitions state space into the

two different domains of attraction, i.e. the separatrix. In [11–13] the authors divide the points in the state space into

different regions depending on where the trajectories stabilize. We propose an algorithm that is able to find the points of

the separatrix by limiting the search area, and we propose an alternative method to reconstruct the separatrix surface using

a Moving Least Squares approximant [18,26] . This quasi-interpolant is formulated by means of radial basis functions with

compact support, providing a local approximation of each evaluation point. This method, using the explicit formula of the

Lagrange multipliers, avoids the setting up of a large interpolation system, thus reducing the computational cost. 

We apply our method to find the tipping points of an eco-epidemiological model proposed in [24] . This model combines

disease transmission in a predator population with the ecological dynamics of a predator–prey system. The feature of this

model is that predators cooperate by hunting in packs. This cooperation can induce a tipping point in the predator density:

if predator density is too small, the predator population goes extinct as they are not sustained by the prey. However, if the

predator density is large enough, hunting cooperation mediates predator survival due to increased prey consumption. The

critical predator density needed for survival corresponds to the tipping point between extinction and persistence. In ecology,

this tipping point is also known as extinction threshold or as Allee threshold [7,8,15] . The Allee effect describes the positive

correlation between population density and population fitness (measured as the per-capita growth rate) [3,15] . There are

two types of Allee effects. Strong Allee effects are characterized by a critical threshold below which populations go extinct,

whereas weak Allee effects do not induce a threshold such that small populations can survive. We will use our method to

study how the Allee threshold changes for varying ecological and epidemiological parameters. We will find that the strong

Allee effect can turn effectively into something similar to a weak Allee effect, of which we become aware only because we

approximate the Allee threshold. 

In the next Section, we introduce the eco-epidemiological model and summarize the main results on its dynamical be-

havior. In Section 3 we explain the algorithm developed to reconstruct the separatrix manifold, and in Section 4 we apply

the algorithm to the eco-epidemiological model. The final section presents conclusions and some ideas for future work. 

2. Eco-epidemiological model 

In this section, we recap an eco-epidemiological model introduced and analyzed in [24] . This model exhibits bistability

and will be used to illustrate the numerical tool to approximate separatrix surfaces later on. 

In many biological systems animals exhibit social behavior. Pack-hunting animals are an example, where predators hunt

their prey by working together with other members of their species. For example, African wild dogs [16,17] organize them-

selves in a coordinated formation to surround and attack their prey. Lions hunt in pack of three to seven individuals, splitting

into center and wings, to ambush prey [37] . Cooperation in a group represents a mechanism developed through evolution

to improve the skills of hunting and the chance of survival. 

In the last decades, biomathematics has paid increasing attention to social behavior as it is well known to induce strong

Allee effects. Thus, there is the possibility of extinction if population density falls below the critical value known as Allee

threshold [5,15,22,24,39] . Therefore it is important to study this quantity in order to protect endangered species (or to

guide eradication campaigns of pest species). Population dynamics can be modeled mathematically by means of a system

of differential equations with the population densities over time as unknowns and with suitable parameters to describe

population interactions such as predation. The mathematical approach coupled with experimental investigations allows to

convert the underlying mechanism into a predictive science [31] . 

The eco-epidemiological model considered here is based on prey and predator populations with densities N and P , re-

spectively. Predators are assumed to be cooperative hunters and to suffer an infectious disease, which is why the predator

population is split into susceptibles ( S ) and infecteds ( I ), with P = S + I. The population dynamics in time T can be described

by a three-dimensional system of nonlinear ordinary differential equations: 

dN 

dT 
= r 

(
1 − N 

K 

)
N − ( a 0 + a 1 P ) NP, 

dS 

dT 
= −β

SI 

P 
− mS + ε( a 0 + a 1 P ) NS + ( 1 − θ ) ε( a 0 + a 1 P ) NI, 

dI 

dT 
= β

SI 

P 
− mI − μI + θε( a 0 + a 1 P ) NI. 

We assume logistic growth in prey, with r being the per capita net growth rate and K the carrying capacity. Predators have

a natural per capita death rate m and grow by consuming prey. Their functional response to prey is given by the term
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Table 1 

Equilibria of model (1)–(3) and their existence and stability conditions. 

Equilibrium Coordinates Meaning 

E 0 (0, 0, 0) Extinction of all species 

E n ( k , 0, 0) Prey only 

E i (0, 0, 1) Extinction of all species 

E ni (k, 0 , 1 − (1 −θ ) k 
β−μ

) Disease-induced predator extinction 

E np ( n ∗ , p ∗ , 0) Disease-free predator–prey coexistence 

E npi (n ∗, p ∗, β−μ−(1 −θ ) 
(β−μθ) 

) (Endemic) coexistence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a 0 + a 1 P ) N, where a 0 is the density-independent predation rate corresponding to a linear functional response and a 1 rep-

resents the strength of hunting cooperation. Parameter ε is the conversion efficiency from prey to predator density. Disease

transmission in the predator population is frequency-dependent, with β being the transmission parameter. Moreover, we 

consider the possibility of vertical transmission, i.e. the disease can be passed from mother to offspring, and θ ∈ [0, 1] is the

fraction of offsprings acquiring infection from their mothers. Infected predators are subject to an additional disease-induced

per capita death rate, μ. 

To analyze the system we first replace the state variables S and I by the entire predator population P = S + I and its

prevalence i = I/P . We then nondimensionalize the system by introducing the dimensionless quantities 

n = 

εa 0 
m 

N, p = 

a 0 
m 

P, t = mT . 

This leads to: 

dn 

dt 
= r ′ 

(
1 − n 

k ′ 
)

n − ( 1 + αp ) np, (1) 

dp 

dt 
= −

(
1 + μ′ i 

)
p + ( 1 + αp ) np, (2) 

di 

dt 
= i ( 1 − i ) 

(
β ′ − μ′ ) − ( 1 + αp ) ( 1 − θ ) ni, (3) 

where 

r ′ = 

r 

m 

, k ′ = 

εa 0 K 

m 

, α = 

ma 1 

a 2 
0 

, μ′ = 

μ

m 

, β ′ = 

β

m 

are dimensionless parameters. In particular, α represents the strength of predator cooperation and shall be of special interest

along with the disease transmissibility. From now on, we drop the dashes appearing in the parameters to simplify notation.

The main goal of analyzing the model is to study the long-term behavior of the trajectories in time. Therefore, the first

step is to find the equilibria of the system, i.e. the constant solutions. These points are stable if there exists a set, called the

basin of attraction, that contains all the initial conditions evolving toward the equilibrium. 

Solving for the equilibria of model (1)–(3) , we find the ones listed in Table 1 . For existence and stability conditions, please

see [24] . 

An important quantity in the stability analysis is the basic reproduction number of the disease in the predator population,

R 0 = 

β

μ + (1 − θ ) k 
, (4) 

which gives the number of secondary infections caused by a single infected predator during its lifetime when the predator–

prey system is at disease-free coexistence equilibrium. We can distinguish two cases. First, if R 0 < 1, the infection will die

out in the long run. In this case, the model reduces to the disease-free predator–prey system with predator cooperation con-

sidered in [39] . Second, if R 0 > 1, the disease will spread in the predator population; in this case, there may be coexistence

of predators, prey, and disease or disease-induced predator extinction. To investigate the impact of pack hunting we study

the bifurcation behavior by numerically continuing the equilibria and their stability as functions of the hunting cooperation

parameter α. In particular, here we compare the case in which the disease cannot establish ( R 0 < 1; left panels of Fig. 1 )

with the endemic case ( R 0 > 1; right panels of Fig. 1 ). 

In each case, we assume a baseline scenario in which predators go extinct if hunting cooperation is absent or small

( α < αc ; Fig. 1 C and D). In this parameter range ( α < αc ) the hunting cooperation is not sufficient to avoid predator ex-

tinction. As a consequence, the prey population reaches carrying capacity ( Fig. 1 A and B). The system is equivalent to the

classical Lotka–Volterra model with prey self-regulation in a parameter range where the prey-only equilibrium ( E n or E ni ) is

the only attractor. 

If α = αc a limit point occurs and there is a saddle–node bifurcation such that for α > αc there are two branches of

nontrivial equilibria, one being stable and the other one being unstable. That is, for sufficiently large hunting cooperation
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Fig. 1. Bifurcation diagrams of model (1)–(3) for varying hunting cooperation. The left panels are the disease-free case ( β = 0 . 7 ; R 0 < 1 ) and the right 

panels are the endemic case ( β = 5 ; R 0 > 1 ). Red lines indicate stable equilibria and dashed black lines unstable equilibria. LP marks limit point bifurcations 

occurring at α = αc and HB marks Hopf bifurcations at α = αh . The bold green lines are the amplitudes of limit cycles. Other parameter values: r = 10 , 

k = 0 . 8 , θ = 0 . 1 , m = 0 . 3 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

the system is bistable. Predators either go extinct ( E n or E ni ) or coexist with the prey ( E np or E npi ), depending on the initial

population densities. Pack hunting can thus mediate the survival of predators, in particular if the prey density cannot sustain

predators in the absence of hunting cooperation. This is an emerging property not present in the classical Lotka–Volterra

model. 

In this parameter range, cooperation induces a strong Allee effect in the predator population. The Allee threshold is the

predator density, below which predator populations go extinct, and above which they survive. It is important to note that

this Allee threshold for the predator density depends on the prey population density and also on the prevalence of infection.

This cannot be seen in the bifurcation diagrams. The panels in Fig. 1 C and D show predator curves of the unstable coexis-

tence state, but because we are dealing with a higher-dimensional system they do not correspond to the Allee threshold.
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Fig. 2. Two-parameter bifurcation diagram of model (1)–(3) when varying predator cooperation α and disease transmissibility β . The red dashed line 

represents the limit point bifurcation curve (LP) and the black one the Hopf bifurcation curve (HB). There are four different scenarios in the endemic case: 

(1) disease-free model, (2) extinction of predators, (3) bistability between predator extinction and stable endemic coexistence, and (4) bistability between 

predator extinction of oscillatory endemic coexistence (OC). In the disease-free case, LV stands for the prey-only state of the Lotka–Volterra model with 

logistic prey growth. Other parameter values as in Fig. 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead, we have to find the separatrix between the prey-only state and the coexistence state—which will be the topic of

the next section. 

In the remainder of this section, we complete the description of the bifurcation behavior in the eco-epidemiological

model. If α > αc and hunting cooperation increases, the prey population density at stable coexistence equilibrium decreases

because cooperating predators become more effective in exploiting the prey. In turn, predator density increases initially with

increasing cooperation, but declines for larger values of α when the prey becomes overexploited. 

Furthermore, for high values of predator cooperation, there is a Hopf bifurcation, where the coexistence equilibrium

becomes unstable and populations start to oscillate (at α = αh in the bifurcation diagrams). Meanwhile the prey-only equi-

librium remains stable, i.e. we continue to have bistability. 

The bifurcation behavior described so far is the same for the disease-free and the endemic case. We now highlight some

important differences. In the disease-free case, infection prevalence always vanishes ( Fig. 1 E). By contrast, when R 0 > 1 the

prevalence can reach two different levels, depending on whether or not predators survive. (Note that if predators go extinct

the prevalence is the ratio of predators infected in the limit process of the predator population density approaching zero.)

These prevalence levels are independent of α ( Fig. 1 F and Table 1 ). 

Probably more importantly, the disease tends to reduce the impact of hunting cooperation. Comparing the bifurcation

diagrams of predators and prey for the disease-free case on the one hand and for the endemic case on the other hand we

observe that the limit point occurs for larger values of α in the presence of the disease. This makes sense as due to infection

there is a higher mortality rate in the predator population. This requires higher hunting cooperation to mediate predator

survival, and it also reduces the peak density of predators (compare Fig. 1 D with Fig. 1 C). 

In order to provide a more complete overview, we show a two-parameter bifurcation diagram in Fig. 2 (see also [20] ).

We can distinguish four different dynamical regimes: 

1. For low values of β ( R 0 < 1) the disease is not endemic. In this disease-free case, there are three different scenarios de-

pending on the level of hunting cooperation. First, for small values of α, pack hunting is too weak to overcome predator

extinction, basically corresponding to the prey-only state in the Lotka–Volterra model with prey self-regulation. Second,

for higher hunting cooperation, there is bistability between the prey-only state E n and the predator–prey coexistence

state E np . Third, for even higher values of hunting cooperation, E np becomes unstable. That is, there is bistability between

the prey-only state and the predator–prey oscillations. The following regimes assume disease persistence ( R 0 > 1) but are

analog to the cases just described. 

2. For low values of α (to the left of the limit point curve), hunting cooperation is too weak and predators go extinct ( E ).
ni 
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3. For sufficiently large hunting cooperation, there is a strong Allee effect in predators and bistability between the prey-only

state E ni and the endemic coexistence state E npi . 

4. For large values of α (to the right of the Hopf bifurcation curve), endemic coexistence is cyclic. The system is still bistable,

with the other attractor being E ni . 

In this paper, we are particularly interested in the bistable regime, where the system shows tipping behavior in the sense

that predators either go extinct or survive at stable equilibrium. We shall focus on the endemic case and therefore consider

the dynamical regime no. 3, which covers a large part of the parameter range shown in Fig. 2 . However, the analysis so far

has not given us any information about the Allee threshold. Therefore, we do not know anything about the critical extinction

threshold for the predators. Is it very high such that predators would have a hard time to survive in the bistable case, or is

the Allee threshold quite low such that survival chances in the bistable case would be much better? With this is mind we

proceed in studying the basins of attraction and in particular the surface that allows to separate them in the phase space. 

3. Separatrix surface 

In this section, we present a numerical method for analyzing the phase space and approximating the separatrix between

different basins of attraction. We motivate this method as to find the Allee threshold in the eco-epidemiological model

introduced earlier. 

In general, the trajectories of a dynamical system approach different equilibria depending on certain conditions imposed

on the parameters and depending on particular initial states. Thus we can partition the state space into different regions,

i.e. the basins of attraction of one of the multiple stable states. In the eco-epidemiological model, there can be up to two

stable states, which is why there are two basins of attraction, one for each of them. By reconstructing the separatrix curve

between the basins of attraction, it is possible to study the Allee threshold representing the critical value of the predator

density indicating when the system approaches predator extinction or predator–prey coexistence. 

To this end, we develop an algorithm and implement it in Matlab, based on two fundamental steps: 

1. Detection of points lying on the surface. 

2. Reconstruction of the separatrix using a Moving Least Squares (MLS) quasi-interpolant. 

3.1. Detection of separatrix points 

In [14] the authors present a method to determine separatrix points. They consider N × N points gridded on the faces of

the cubic domain [0, l ] 3 . Then, if the solutions of the model converge to different attractors, they consider initial conditions

in pairs and employ the bisection method. In the phase space ( n , p , i ), the following initial conditions are considered: 

(n j , p j , 0) and (n j , p j , l) , j = 1 , . . . , N 

2 , 

(n j , 0 , i j ) and (n j , l, i j ) , j = 1 , . . . , N 

2 , 

(0 , p j , i j ) and (l, p j , i j ) , j = 1 , . . . , N 

2 . 

Fig. 3 A shows an example of different trajectories starting from various initial conditions in the phase space. Fixing the

biological parameters and starting from different initial conditions (red circles), the populations reach one of the two differ-

ent stable equilibria (green stars). When looking at the diagram, we already get an idea about the location of the separatrix

surface in the phase space. In particular, when projecting the phase space on the plane ( n , p ) ( Fig. 3 B), we note that the

long term evolution of the trajectories depends mainly on predator densities. In fact, the previous Section has shown the

existence of a strong Allee effect in predators linked with the bistability. If the predator density is below the Allee thresh-

old, predators go extinct and otherwise they persist, reaching the coexistence equilibrium E npi . From these observations we

can state that the separatrix surface is located between the planes π1 : p = 0 and π2 : p = l. Hence, the set of the initial

conditions reduces to: 

P 1 j = (n j , 0 , i j ) , P 2 j = (n j , l, i j ) , j = 1 , . . . , N 

2 . (5)

Therefore, we integrate model (1)–(3) on the cubic domain [0, 1] 3 by considering N = 8 equispaced points on each the n -

axis and the i -axis. By applying the bisection method to the 64 pairs of initial conditions we obtain the scattered points of

the separatrix shown in Fig. 4 . 

3.2. Approximation of the surface 

In order to reconstruct the separatrix surface, we connect the scattered points found in the previous subsection by means

of a Moving Least Squares approximation (MLS) belonging to the class of mesh-less numerical method, that have been

employed in many areas of science [1,2,19] . The main idea of the MLS it is to approximate a function f , on the evaluation

points y ∈ R 

d , by solving small weighted least squares problems. 
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Fig. 3. Example of trajectories of model (1)–(3) starting from different initial conditions represented by the red empty circles and approaching equilibrium 

points (green stars) in 3D phase space (A) and projected on the phase plane ( n , p ) (B). Parameter values: α = 2 , β = 2 , and the other ones as in Fig. 1 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Scattered separatrix points. Parameter values as in Fig. 3 . 

 

 

Given a discrete set χ = { x 1 , . . . , x N } ⊂ R 

d of data sites and knowing the evaluation of the function f at these points:

{ f ( x 1 ) , ..., f ( x N ) } , following the Backus–Gilbert approach [4,18] , we construct the quasi-interpolant: 

P f ( y ) = 

N ∑ 

i =1 

f ( x i )�i ( y ) , (6) 

where �i ( y ) = �( y , x i ) are the generating functions that govern the approximation goodness. For each evaluation point the

aim is to find the functions �i minimizing the quantity 

1 

2 

N ∑ 

i =1 

�2 
i ( y ) 

1 

ω( x i , y ) 
, (7) 
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where ω is the weight function governing the data influence and becomes smaller the further away from each other its

arguments are. Specifically, we used a compactly supported radial basis function 

∀ x , y ∈ R 

d ω ε ( x , y ) = 0 i f || x − y || 2 > ε, (8)

where ε is the so-called shape parameter which influences the approximation goodness [40] . 

In order to ensure that the quasi-interpolant P f achieves a certain approximation power, it is required that the generating

functions �i , reproduce polynomials of a certain degree q . Thus they are subject to the constraints 

N ∑ 

i =1 

p( x i )�i ( y ) = p( y ) ∀ p ∈ �d 
q , (9)

where �d 
q is the space of the d -variate polynomials of total degree at most q with dimension Q = 

(d+ q )! 
q ! d! 

. 

By considering the vector �( y ) = [�1 ( y ) , . . . , �N ( y )] we can rewrite (7) in matrix form: 

1 

2 

�T ( y ) W ( y ) �( y ) , with W ( y ) = diag 

(
1 

ω( x 1 , y ) 
, . . . , 

1 

ω( x N , y ) 

)
, (10)

and the linear polynomial constraint (9) becomes: 

A �( y ) = p ( y ) (11)

with A ki = p k ( x i ) , k = 1 , . . . , Q, i = 1 , . . . , N being the entries of matrix A and p = [ p 1 ( y ) , . . . , p Q ( y )] T being the known vec-

tor. The generating functions � satisfying (10) and (11) are given by: 

�i ( y ) = ω( x i , y ) 

Q ∑ 

k =1 

λk p k ( x i ) i = 1 , . . . , N, (12)

where λk are the Lagrange multipliers, i.e. the only solutions of the system 

Q ∑ 

k =1 

λk 

N ∑ 

i =1 

ω( x i , y ) p k ( x i ) p q ( x i ) = p q ( y ) 0 ≤ q ≤ Q . (13)

Therefore, by considering the vector � = [ λ1 , . . . , λN ] , and by letting K( x i , y ) = ω( x i , x )�
T ( x ) p( x i ) , the quasi-interpolant is:

P f ( y ) = 

N ∑ 

i =1 

f ( x i ) K( x i , y ) . (14)

In order to improve the stability of the method, the polynomials are centered on the evaluation points, i.e. p( x i ) = p( y − x i )

so that only p 1 ( y ) ≡ 1 	 = 0 [18,40] . 

Constructing the quasi-interpolant (14) , most of the computational cost is for the estimation of Lagrange multipliers λk ,

requiring the solution of system (13) for each evaluation point y . This appears to be quite expensive, but there are two

important factors to consider. 

First, for our purpose, to reconstruct the surface we do not need a large number of evaluation points. Second, the linear

polynomial reproduction ( q = 1 ) is proved to be of approximation order O ( h 2 ) [18] , and it is accurate enough in our contest.

Since we are in R 

2 , the linear system (13) that we have to solve is: 

G ( y ) λ( y ) = p( y ) , y ∈ R 

2 , (15)

where G is the Gram matrix with entries G jk ( y ) = 

∑ N 
i =1 p k ( x i ) p l ( x i ) ω( x i , y ) and j, k = 1 , . . . , 3 . 

Thanks to the low dimension of the problem in the computation we use Maple to find the explicit formula for the

Lagrange multipliers: 

λ1 ( y ) = 

1 

| G | (G 

2 
11 − G 22 G 33 ) , 

λ2 ( y ) = 

1 

| G | (G 12 G 31 − G 13 G 23 ) , 

λ3 ( y ) = 

1 

D 

(G 22 G 13 − G 13 G 23 ) . 

In this way the solution of the linear system is avoided at all and for each evaluation point y the computational cost is at

most 

O (Q 

3 + Q 

2 N y + QN y ) , (16)

where N y is the number of data sites inside the support of the weighted functions w (·, y ) [40] . 

We are now ready to construct the separatrix manifold. We assume the data sites χ as the scattered points projected

onto the ( n , p ) plane, while the data values f i = f ( x i ) describe the height at x i . Then we apply the MLS method just de-

scribed in generating the local approximation. 

The sketch of the overall algorithm is shown in Fig. 5 . In the next section we provide some numerical results by using

the Matlab software. 
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Fig. 5. Pseudo-code of the algorithm to detect and to connect the separatrix points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical experiments 

In this section, we apply the method to reconstruct the separatrix surface in the eco-epidemiological model. The aim is to

approximate the Allee thresholds in the bistable regime which correspond to the predator population densities necessary for

survival. For the numerical experiments we use model (1) –(3) with the biological parameter values r = 10 , k = 0 . 8 , m = 0 . 3 ,

θ = 0 . 1 and integrate over one side of the cubic domain of the 3D phase space, [0, 1]. We take N = 8 equispaced points

on both the n -axis and the i -axis as starting conditions for the bisection method to obtain a sufficient number of separa-

trix points. We iterate the method until the tolerance 10 −4 is obtained. We choose the Wendland C2 compactly supported

function, centered on y , as weights: 

ω( x i , y ) = (1 − ε|| y − x i || 2 ) 4 + (4 ε|| y − x i || 2 + 1) . (17) 

For our model a good approximation is found empirically with the shape parameter 1 ≤ ε ≤ 3, and our numerical studies use

ε = 1 . 5 . In the following, we present the analysis of the basins of attraction of the prey-only equilibrium E ni and coexistence

equilibrium E npi by varying the hunting cooperation α and disease transmissibility β . 

Fig. 6 A shows the separatrix for a given set of parameters. We observe that whether the system approaches the prey-only

state or the coexistence state depends mainly on the predator density, in particular its relative size to the Allee threshold.

The Allee threshold varies as a function of both disease prevalence and prey density. If disease prevalence is higher, the

Allee threshold tends to increase as well. This seems plausible, as pack hunting requires more predators to compensate

for disease-related mortality. If prey density is higher, the Allee threshold tends to decrease. This seems plausible as well,

because less pack hunting is needed in the presence of more resources for the predators. 

Fig. 6 B shows the separatrix for increased disease transmissibility. As a consequence, there will be more infections (see

the increased prevalences of the stationary states) and correspondingly higher disease-related mortality rates, which need

to be compensated by pack hunting for the predators to survive. Therefore, the Allee thresholds tend to be larger, which is

why the separatrix has shifted to the right-hand side (i.e., in the positive predator direction) in comparison to Fig. 6 A. 

We now consider the interesting case of varying hunting cooperation, α ( Fig. 7 ). If hunting cooperation increases, the

separatrix surface moves closer to the plane p = 0 , considerably reducing the basin of attraction of the prey-only state E ni 

(compare Fig. 7 B with Fig. 7 A). Therefore, the trajectories of the system almost always tend to the coexistence state E npi 

except for very low predator densities. 

So far we have seen that disease transmissibility tends to increase the Allee threshold, whereas hunting cooperation tends

to decrease the Allee threshold. If we increase the two parameters β and α simultaneously, we observe, for the parameter

set chosen in Fig. 7 C, that the separatrix surface moves close to the plane p = 0 . This means that the impact of pack hunting

prevails even when disease transmission increases. The location of the Allee thresholds thus complements the results from

a bifurcation analysis [24] . 
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Fig. 6. Separatrix curve for different values of β . (A) α = 2 , β = 2; (B) α = 2 , β = 8 . The blue star represents E ni and the red one is E npi . Other parameter 

values as in Fig. 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Separatrix curve for different values of α and β . (A) α = 2; β = 2, (B) α = 6 ; β = 2 (C) α = 6 , β = 8 . The blue star represents E ni and the red one 

is E npi . Other parameter values as in Fig. 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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Table 2 

Execution times for the detection and the reconstruction of the separatrices by fixing 

different values of α and β . 

Separatrix Detection time Reconstruction time 

α = 2 , β = 2 2.50 min 35 s 

α = 2 , β = 8 2.35 min 40 s 

α = 6 , β = 2 2.27 min 47 s 

α = 6 , β = 8 2.42 min 32 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 reports the execution times to detect and to reconstruct the separatrices for different values of the parameters α
and β . 

5. Conclusions and future work 

In this paper, we have presented a numerical tool to study the separatrix manifold of two basins of attraction. After de-

tecting the separatrix points we reconnect them by means of the Moving Least Squares approximant. This method presents

a number of advantages in the surface reconstruction, without the need of solving a linear system. We have to solve small

weighted problems depending on the different evaluation points. In particular, working with bi- or tri-dimensional data

sites, it is possible to find the explicit formula for the Lagrange multipliers. 

For our case studies of the eco-epidemiological model (1) –(3) , only a few evaluation points have been necessary. How-

ever, a larger number of evaluation points might require parallelization of the method. 

The separatrix is the key in understanding and studying the Allee thresholds of the eco-epidemiological model. Stan-

dard equilibrium and stability analysis as well as bifurcation and continuation methods provide various insights, but do not

give us information about the Allee threshold itself. Being the critical predator density needed for survival, this threshold is

an important quantity, especially when it comes to population management. One may think of control programs to eradi-

cate predators that are pests (e.g. in the case of biological invasions) or one may think of conservation programs where a

sufficient number of reintroductions are needed to preserve an endangered predator population. 

Moreover, the numerical method allows us to underline and to understand the impact of pack hunting and disease

transmission directly on the Allee threshold. In particular, even if the bifurcation analysis presents bistability suggesting

a strong Allee effect in the predator population, we have demonstrated that for large hunting cooperation the basin of

attraction of the predator-extinction state contains only initial conditions with rather small predator densities. This might

be interpreted in such a way that the Allee threshold is almost zero, in which case the predators almost always survive and

are not very much affected by the stability. In other terms, pack hunting can not only mediate predator survival by inducing

a strong Allee effect, but it can be so powerful that it turns a strong Allee effect effectively into a weak Allee effect. The

difference is that in the latter case predator survival is (almost always) guaranteed, whereas in the former case an initial

number of predators above the Allee threshold is needed for survival. 

In future work we plan to further improve the method [21] by speeding up the detection of the separatrix points, using

the theory of the stable manifold of the equilibrium points to reduce the integration domain. 
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