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A B S T R A C T

Virus–plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of
infected plants in comparison with uninfected plants under certain environmental conditions. Increased
fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main
virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and
horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in
infected plants. To better understand plant–virus symbiosis evolution, we explore the ecological and
evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity.
We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector
transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations,
we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the
course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and
parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show
that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this
study include the evolution of conditional (environment-dependent) mutualism in plant viruses.

1. Introduction

Plant viruses exhibit the full symbiont spectrum and thus can have a
range of effects on plants (Roossinck, 2011; Bao and Roossinck, 2013;
Fraile and García-Arenal, 2016). Plant viruses can confer herbivore
resistance (Gibbs, 1980), pathogen resistance (Shapiro et al., 2012),
and drought tolerance (Xu et al., 2008; Davis et al., 2015). Differential
effects of viruses on plants occur due to variation in environment and
genetics of plants and viruses (Johansen et al., 1994, 1996; Domier
et al., 2007, 2011; van Mölken and Stuefer, 2011; Davis et al., 2015;
Hily et al., 2016). Some viruses have neutral or positive effects on
plants by not affecting or increasing components of fitness, respectively
(van Mölken and Stuefer, 2011; Davis et al., 2015; Hily et al., 2016).
These recent works contradict decades of extensive research on plant
viruses elucidating the negative effects of viruses in agronomic systems.
Results from these previous works have led to the convention of

virologists referring to viruses as pathogens. In light of recent findings,
it is clear that plant viruses do not always lead to disease and therefore
by definition are not always pathogens (Pagán et al., 2014; Fraile and
García-Arenal, 2016).

Virus–plant interactions are obligate, symbiotic interactions that
exist along a spectrum from parasitism to commensalism to mutualism.
Parasitic associations occur when one species exists at a cost to the
other, which follows the convention of virus–plant interactions.
Commensalism occurs when one species profits from the interaction,
but has no effect on the other species. The plant benefits the virus by
promoting virus transmission. In the common bean (Phaseolus vulgaris)
seed number and weight were not affected by Phaseolus vulgaris
endornavirus 1 and 2 (R. A. Valverde pers. comm.). In a mutualistic
relationship net effects are positive with enhanced survival and/or
reproduction for both the plant and virus, thus as with all mutualisms
the benefits outweigh the costs of the relationship. Cucumber mosaic
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virus (CMV) benefits Arabidopsis thaliana by increasing seed production
in comparison to plants without virus though this effect depends upon
environmental conditions (Hily et al., 2016). CMV alters volatiles in
Solanum lycopersicum making it more attractive to pollinators (Groen
et al., 2016), which may enhance virus transmission by seed.

Plant viruses have evolved various modes of transmission resulting
in genetic variation within and among virus species to interact with the
genetic variation within and among plant species (Johansen et al.,
1994, 1996; Domier et al., 2007, 2011). Some viruses are integrated
into the plant genome and thus are persistent (Harper et al., 2002).
Certain virus species can circulate within an insect vector or propagate
within an insect vector resulting in persistent virus transmission to
plants, while other vector-transmitted viruses are transferred in a semi-
persistent to non-persistent manner (intermediate to short timeframe).
Most viruses depend upon more than one mode of natural transmission
by pollen, seed, and vector (reviewed in Hamelin et al., 2016) though
having a suite of transmission modes can lead to trade-offs among
modes of transmission.

Trade-offs between seed and vector transmission may occur when
vector transmission is positively correlated with virulence, defined here
as reduced fecundity in infected plants, as opposed to increased
mortality in infected plants (Doumayrou et al., 2013). Serial passage
of the Barley stripe mosaic virus in Hordeum vulgare through vectors
resulted in an increase in vector transmission rate and virulence
(reduced seed production), whereas serial passage through seed led to
an increase in seed transmission and a decrease in virulence (increased
seed production) (Stewart et al., 2005). Likewise, serial passage of
Cucumber mosaic virus (CMV) by seed of Arabidopsis thaliana led to an
increase in seed transmission rate, decline in CMV virulence (increased
total seed weight) and reduction in virus accumulation (Pagán et al.,
2014). A trade-off between virulence and vector transmission in a
parasitic virus can lead to the emergence and coexistence of virulent
vector-borne strains and less virulent, non-vector borne strains of virus
(Hamelin et al., 2016). Furthermore, trade-offs between modes of
transmission can result in the coexistence of different modes of virus
transmission within a plant population that is evolutionarily stable
(Hamelin et al., 2016).

To better understand plant–virus symbiosis evolution, we explore
the ecological and evolutionary interplay of virus transmission modes
between seeds and vectors when infection can lead to an increase in
plant fecundity, which was not addressed by Hamelin et al. (2016). We
consider two possible trade-offs: vertical seed transmission vs infected
plant fecundity, and horizontal vector transmission vs infected plant
fecundity (virulence). We use mathematical models and numerical
simulations to address three questions: (1) Can a trade-off between
virulence and vertical transmission lead to virus extinction in evolu-
tionary time? (2) As a virus evolves, can evolutionary branching occur
with subsequent coexistence of mutualistic and parasitic virus strains?
(3) Can mutualism outcompete parasitism in the long-run?

2. Ecological model

2.1. Discrete-time model

The model includes two methods for viral transmission to a host
plant: (1) infected vectors and (2) infected seeds. A discrete-time model
is formulated since each of the transmission events occur at different
time periods during the year. Therefore, the year is divided into two
periods, corresponding to vector and seed transmission, denoted as V
and S, respectively:

⏟ ⏟
t

V
t

S
t⎯→⎯ ′ ⎯→⎯ + 1.

During the time interval [t, t′], the newly developed plants are
colonized by vectors. Virus transmission from the vector to the host
plant occurs during this first time interval. During the second time

interval [t′, t + 1], seeds drop to the ground and those that survive,
either uninfected or infected seeds, germinate and produce new
uninfected or infected plants, respectively. We assume there is no seed
bank. At the beginning of the next year, t+ 1, seeds have germinated
and produced new plants. The annual cycle repeats.

To keep the model simple, there are no explicit vector dynamics.
The acquisition of the virus by non-viruliferous vectors, and inoculation
of the host plant by viruliferous vectors are modeled implicitly. Only
the dynamics of the host plant are modeled. Two variables account for
the plant dynamics during each of these two stages. The two variables
are H and I, the density of uninfected and infected plants, respectively.
The total density of uninfected and infected plants is denoted as T = H
+ I. The plant dynamics are observed each year at time t, t= 0, 1, 2, …
after seed transmission and before vector transmission.

During the vector stage V, the Poisson distribution is used to model
virus transmission between the vector and the host plant. Let ΛV denote
the parameter in the Poisson distribution: it is the average number of
viruliferous vector visits per plant per year that result in subsequent
inoculation of an uninfected plant. Horizontal transmission parameter β
relates this number to the infection prevalence at the beginning of the
vector stage. Virus transmission through vectors is assumed to depend
on the frequency of infected plants, I/T, rather than on their density I
(Ross, 1911; Hamelin et al., 2016). Then

β I t
T t

Λ = ( )
( )V

Hence, the probability of no successful virus transmission from vectors
to a given host plant is exp(−ΛV) and the probability of successful
transmission is 1− exp(−ΛV). Therefore, at time t′, the model takes
the form:

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

H t H t β

I t I t H t β

( ′) = ( )exp − ,

( ′) = ( ) + ( ) 1 − exp − .

I t
T t

I t
T t

( )
( )

( )
( ) (1)

Notice that at low infected plant density (I(t) ≪ H(t) ≈ T(t)),

I t I t H t β I t
T t

I t β( ′) ≈ ( ) + ( ) ( )
( )

≈ ( )(1 + ),
(2)

i.e., β is like a multiplication factor of infected plants associated with
vector transmission.

For the second transmission stage S, we assume competition and
overcrowding between neighboring plants reduces the number of seeds
per plant (Watkinson and Harper, 1978; Pacala and Silander, 1985).
Density-dependent effects apply equally to uninfected and infected
plants. Let bH and bI denote the effective number of seeds produced per
uninfected or infected plant, respectively, at low plant density. We
assume that the virus infects both the maternal plant and the seeds.
Thus, only infected plants produce infected seeds. At low plant density,
more than one effective seed is produced per uninfected plant,

b > 1.H (3)

The seeds that survive germinate into either uninfected or infected
plants. If vertical transmission is full, all seeds produced by an infected
plant are infected but if not, only a proportion p produced is infected
and the remaining proportion q= 1− p is not infected.

We apply a well-known form for plant density-dependence due to de
Wit (1960) (also known as Beverton–Holt density-dependence in
animal populations). The model in the second stage is

H t

I t

( + 1) = ,

( + 1) = ,

′ ′
′

′
′

b H t I t
λT t

I t
λT t

( ) + qb ( )
1 + ( )

pb ( )
1 + ( )

H I

I
(4)

where T(t) = H(t) + I(t) and λ describes density-dependent competi-
tion between plants.
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The full vector-seed transmission model consists of the preceding
models for the two stages V and S, Eqs. (1)–(4). Combining these two
pairs of difference equations, the model can be expressed as a first-order
difference equation for uninfected and infected plants, i.e.,

H t

I t

( + 1) = ,

( + 1) = ,

b H t P t I t H t P t
λT t

I t H t P t
λT t

( ) ( ) + qb ( ( ) + ( )(1 − ( )))
1 + ( )

pb ( ( ) + ( )(1 − ( )))
1 + ( )

H I

I
(5)

where

⎛
⎝⎜

⎞
⎠⎟P t β I t

T t
( ) = exp − ( )

( )

is the probability an uninfected plant escapes infection during year t.
Table 1 lists all model variables and parameters with their definition.

2.2. Basic reproductive number

At virus-free equilibrium (VFE), the density of infected plants is zero
and the density of uninfected plants is

H b
λ

= − 1 .H

The basic reproductive number for model (5) is computed from
linearization of the difference equation for the infected host I about
the VFE:

pb
b

β= (1 + ).I

H
0R

(6)

If the reproductive number is greater than one, then our annual plant
model shows that these two transmission mechanisms may be able to
maintain the virus within the host population. If viral transmission is
purely vertical, limited only to seed transmission (β = 0), then > 10R

if and only if pbI > bH, which requires bI > bH. That is, this simple
model shows that purely vertical transmission of a virus through the
seed cannot maintain the virus in the host population unless infected
plants have greater fecundity than uninfected plants (Fine, 1975;
Hamelin et al., 2016). Note that the ratio bI/bH represents the extent
to which host fecundity is reduced/increased by virus infection. If
reduced, then the ratio is a measure of the virulence of the virus (virus-
induced loss of fitness).

In the mathematical analysis (Appendix A), we focused on the case
p = 1 (full vertical transmission), while simulations were additionally
performed for p < 1 (partial vertical transmission; Fig. 1). For the case
p = 1, a second basic reproductive number for invasion of uninfected
plants into an entirely infected plant population is derived. The
equilibrium where the entire plant population is infected is referred
to as the susceptible-free equilibrium (SFE). A new threshold value for
the SFE is defined as

b
b

β= exp(− ).H

I
0R

If < 10R , then the SFE is stable and if > 10R then the SFE is unstable

(Appendix A.2). It appears that p < 1 is required for stable coexistence
of both uninfected and infected plants to occur (Appendix A). Fig. 1B
shows that for bI > 1 and p < 1, the dynamics indeed converge to an
endemic equilibrium where uninfected and infected plants coexist.

2.3. Parameterization

The uninfected plant fecundity parameter bH can be estimated from
plant population dynamics. For instance, bH ranges between 1.6 and 3.3
for the sand dune annual Vulpia fasciculata (Watkinson and Harper,
1978; Watkinson, 1980). By contrast, bH is approximately 85 in Kherson
oat (Montgomery, 1912; de Wit, 1960). Thus, bH may range from 1 to
100, depending on the plant species considered. In this paper, infected
plants may have greater fitness than uninfected plants, so bI may range
from 0 to 100 as well. Throughout the paper, we scale the plant
densities by assuming a spatial unit such that λ = 1, without loss of
generality.

In our model, β is a multiplication factor (Eq. (2)) comparable to the
basic reproductive number but restricted to the vector transmission
period V (Eq. (6)). Basic reproductive numbers are gaining increasing
attention in the plant virus literature (Froissart et al., 2010; Péréfarres
et al., 2014), yet few studies provide estimated values for this quantity.
Reasonable values of β may range from 0 to 10 (Holt et al., 1997;
Madden et al., 2000; Jeger et al., 2004), even though larger values
might also be relevant (Escriu et al., 2003; Madden et al., 2007).

3. Evolutionary analysis

We follow an adaptive dynamics approach (Metz et al., 1992;
Dieckmann and Law, 1996; Geritz et al., 1998; Diekmann, 2004). To
address the evolution of mutualistic viral symbioses, the single-strain
model (5) is first extended to n virus strains which differ in their
abilities to be seed-transmitted (bI, p) or vector-transmitted (β). We then
consider a plant population infected with n = 2 virus strains, Ii, i= 1,
2, which differ in their phenotypes. To simplify the notations, we drop
the subscript I in bI to replace it by the strain index i. Let x1 = (β1, b1,
p1) be the resident phenotype and let x2 = (β2, b2, p2) be the mutant
phenotype. We assume the mutant initially represents a relatively small
subpopulation as compared to the resident. That is, I2 ≪ I1.

3.1. Multi-strain dynamics

A natural extension of the single-strain model (5) to n virus strains,
Ii, i = 1, …, n, with traits (βi, bi, pi) is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟
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I t

( + 1) = ,

( + 1) = ,

b H t P t p b I t H t P t

λT t

i

p b I t H t P t

λT t

( ) ( ) + ∑ (1 − ) ( ) + ( )(1 − ( ))

1 + ( )

( ) + ( )(1 − ( ))

1 + ( )

H k
n

k k k
βk Ik t

j
n βj Ij t

i i i
βi Ii t

j
n βj Ij t

=1
( )

∑ =1 ( )

( )
∑ =1 ( )

(7)

where T t H t I t( ) = ( ) + ∑ ( )j
n

j=1 . The probability uninfected plants es-
cape vector infection becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑P t β

I t
T t

( ) = exp −
( )
( )

,
j

n

j
j

=1 (8)

whereas the expression (1 − P(t)) is the probability of vector infection
from some strain (Hamelin et al., 2011).

3.2. Evolutionary invasion analysis

Following Metz et al. (1992), we are interested in testing whether
the mutant can invade. In particular, if

Table 1
Model parameters and variables.

Notation Definition Unit

t Time in years, t = 0, 1, 2, … Time
T(t) Total plant density at time t Per area
H(t) Uninfected plant density at time t Per area
I(t) Infected plant density at time t Per area

bH Effective number of seeds per uninfected plant None
bI Effective number of seeds per infected plant None
p = 1 − q Infected seed transmission probability None
β Vector transmission parameter None
λ Plant competition parameter Area
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⎛
⎝⎜

⎞
⎠⎟t

I t
I

lim 1 log ( )
(0)

< 0,
t→∞

2

2 (9)

the mutant cannot invade the resident. For simplicity, we assume that
the resident population with phenotype x1 is at ecological equilibrium,
i.e., I1(0) ≈ i(x1) = i1 > 0 and H(0) = h(x1) = h1 > 0. Thus, the
resident population is at an equilibrium corresponding to coexistence
of uninfected and infected plants. We therefore define an evolutionary
invasion condition as

⎛
⎝⎜

⎞
⎠⎟

I
I

log (1)
(0)

> 0.2

2 (10)

From the assumptions I2 ≪ I1 and the resident population at
ecological equilibrium, it follows from model (7) with n= 2 strains
that the evolutionary invasion condition (10) can be expressed as

( )I
I

p b h P

λ h i
(1)
(0)

≈
1 + (1 − )

1 + ( + )
> 0,

β
β i2

2

2 2 1 1

1 1

2
1 1

(11)

with

⎛
⎝⎜

⎞
⎠⎟P β i

h i
= exp −

+
,1 1

1

1 1

where P1 is the probability that uninfected plants escape vector
infection at the ecological equilibrium corresponding to the resident
phenotype x1. Using the fact that the resident population I1 is at
ecological equilibrium,

( )I
I

p b h P

λ h i
(1)
(0)

≈
1 + (1 − )

1 + ( + )
= 1,

β
β i1

1

1 1 1 1

1 1

1
1 1

simplifies the evolutionary invasion condition to

( )
( )

p b h P

p b h P

1 + (1 − )

1 + (1 − )
> 1.

β
β i

β
β i

2 2 1 1

1 1 1 1

2
1 1

1
1 1 (12)

Let F1 be the number of vector-borne infections per year relative to the
force of infection of the resident population, i.e.,

F h P
β i

= (1 − ) .1
1 1

1 1 (13)

The evolutionary invasion condition (12) can equivalently be expressed
as

     p b p b β p b β p b F( − ) + ( − ) > 0.2 2 1 1

seed-only transmission

2 2 2 1 1 1 1

vector-seed transmission (14)

Fig. 1. Virus and plant host population dynamics in the phase plane (H, I). Each panel shows a set of possible orbits. Ecological bi-stability occurs for these parameter values ( < 10R and,
for p= 1, < 10R ). Depending on initial conditions, the dynamics converge to the virus-free equilibrium (black curves) or to an alternative equilibrium (grey curves): (A) virus fixation in
the plant population, (B) coexistence of uninfected and infected plants, (C and D) complete extinction of the plant host population. Parameter values: (A and B) bH = 3, bI = 2, λ = 1, (A)
β = 0.45, p= 1, (B) β= 0.57, p = 0.95, (C and D) bH = 2, bI = 0.5, λ = 1 (C) β= 2, p = 1, (D) β= 2, p = 0.95.
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The expression on the left side of (14) is an invasion fitness proxy
function, s(x1, x2), sign-equivalent to the invasion fitness function in
(10). The dynamics of s(x1, x2) as a function of the mutant phenotype x2
determine the evolutionary trajectories.

In this paper, virulence is defined as the negative impact of the virus
on host fitness, i.e., bH/bI. The remainder of the analysis is restricted to
the case of bipartite transmission-virulence trade-offs with negative
correlations between bI and p (vertical transmission), and bI and β
(horizontal transmission).

3.3. Trade-off between vertical transmission and virulence

To consider a trade-off between seed transmission and virulence, we
assume vector transmission is constant, βi = β, i = 1, 2, then the
invasion condition (14) reads

p b p b βF( − )(1 + ) > 0.2 2 1 1 1

Since F1 ≥ 0, the preceding inequality is equivalent to

p b p b− > 0.2 2 1 1

Next, assume there is a trade-off between virulence and seed transmis-
sion, i.e., pi = g(bi), i= 1, 2, with g′(bi) < 0. Then the invasion fitness
proxy function depends only on b1 and b2. That is,

s b b g b b g b b( , ) = ( ) − ( ) .1 2 2 2 1 1 (15)

The dynamics of s(b1, b2) as a function of b2 determine the evolutionary
trajectory. In this case, b evolves so as to maximize the product g(b)b
(Gyllenberg et al., 2011). This result was confirmed by numerical
simulations (Fig. 2A and B; Appendix B). However, it may be that the
value of b that maximizes g(b)b is such that b≤ 1 (Fig. 2C and D). In
this case, evolution drives the virus population to extinction (see also
Fig. 1). Such a phenomenon has recently been found to occur in a
similar but continuous-time model with frequency-dependent horizon-
tal transmission (Boldin and Kisdi, 2016). Darwinian extinction under
optimizing selection can also occur through a catastrophic bifurcation
(Parvinen and Dieckmann, 2013).

3.4. Trade-off between horizontal transmission and virulence

The trade-off between vector transmission and virulence yields a
different evolutionary outcome than the trade-off between seed trans-
mission and virulence. Assume seed transmission is constant,
pi = p > 0, i = 1, 2. The invasion condition (14) is equivalent to

b b β b β b F( − ) + ( − ) > 0.2 1 2 2 1 1 1

Let βi = f(bi), i = 1, 2, with f′(bi) < 0. Then an invasion fitness proxy
function is

s b b b b f b b b f b F b( , ) = ( − ) + ( ( ) − ( )) ( ).1 2 2 1 2 2 1 1 1 1 (16)

In this case, there may exist an evolutionary singular point, b★, if the
selection gradient is zero,

G b s
b

b b f b b f b F b( ) = ∂
∂

( , ) = 1 + ( ( ) + ′ ( )) ( ) = 0.★

2

★ ★ ★ ★ ★
1

★
(17)

Whether b★ is evolutionarily stable is determined by the sign of the
second derivative of s with respect to b2, evaluated at b1 = b2 = b★.
The stability condition is

s
b

b b f b b f b F b∂
∂

( , ) = (2 ′ ( ) + ″ ( )) ( ) < 0.
2

2
2

★ ★ ★ ★ ★
1

★

(18)

Since F1(b★) > 0 and f′(b★) < 0, b★, if it exists, is evolutionarily
stable for concave or linear trade-off functions (f″(b★) ≤ 0). For convex
trade-off functions (f″(b★) > 0), b★ may be unstable.

The singular point b★ is evolutionarily attractive if the derivative of
the selection gradient G in (17) at b★ is negative, i.e.,

G b f b b f b F b f b b f b F b′( ) = ( ( ) + ′( )) ′( ) + (2 ′ ( ) + ″ ( )) ( ) < 0.★ ★ ★ ★
1

★ ★ ★ ★
1

★

(19)

Unfortunately, we have no explicit expression of F1, which makes
conditions (18) and (19) intractable to analysis. Therefore, the trade-off
between virulence and vector transmission is explored through numer-
ical simulations.

To perform the numerical computations, we considered the trade-
off form:

β f b β k b b= ( ) = exp(− ( − )).max min

This exponential form is convex and its curvature increases with k
(f″(b) = k2f(b) > 0). Also, this exponential form allows us to check the
stability of a singular point as in this special case, the stability condition
(18) becomes:

s
b

b b kb f b F b∂
∂

( , ) = (2 − ) ′ ( ) ( ) < 0.
2

2
2

★ ★ ★ ★
1

★

Since f′(b★) < 0, the evolutionary stability of a singular point b★

requires

kb2 − > 0.★

For the parameter set corresponding to Figs. 3 and 4, including bH = 20
and k = 0.1, the critical value (indeterminate stability) is bc = 2/
k = 20. In our simulations, b★ seems to be slightly above bc, thus
branching occurs after a relatively long period of apparent stability.
Extensive numerical simulations indicate that evolutionary branching is
the rule rather than the exception in this model. However the fact that
b★ approximately coincides with both bc and bH is a coincidence used
for illustrative purposes only. For instance, for bH = 15 and the other
parameters unchanged, b★ ≈ 21 is clearly greater than bc = 20 and
bH = 15 (not shown).

Figs. 3 and 4 show that it is possible for a mutualistic symbiosis to
evolve (bI/bH > 1) (or not) from a parasitic symbiosis (bI/bH < 1)
(Fig. 3), or conversely for a parasitic symbiosis to evolve (or not) from
an initial mutualistic symbiosis (Fig. 4). Starting from a monomorphic
virus population, evolutionary dynamics may converge towards com-
mensalism and split into two branches: parasitism and mutualism (bI/
bH < 1 and bI/bH > 1, respectively). The evolutionary outcome
depends on the biologically feasible maximum plant host fecundity
value: if it is large then mutualism may exclude parasitism in the long-
run (Fig. 4), otherwise both parasitic and mutualistic variants may
coexist in the long-run (Fig. 3).

4. Discussion

4.1. Findings

4.1.1. Ecological model
The discrete-time ecological model of an annual plant virus we

developed included two modes of transmission: vector and seed. Key
parameters include vector transmissibility β, uninfected and infected
plant fecundities bH and bI, resp., and seed transmissibility p≤ 1. We
can summarize our findings in terms of these parameters and the basic
reproductive number 0R that defines a threshold for successful invasion
of infected plants. The main conclusions concern the type of virus–plant
interaction, coexistence of infected and uninfected plants, and ecologi-
cal bistability.

First, if there is only seed transmission, i.e., β = 0, then b= pb /I H0R

indicating that purely vertical transmission through seed cannot
maintain the virus in the host population unless the plant–virus
symbiosis is mutualistic (bI > bH). If, however, vector transmission is
included with seed transmission (β > 0) then a parasitic virus
(bI < bH) may be maintained in the host population.

Second, we checked conditions for the coexistence of uninfected and
infected plants in specific models. In the case of full vertical transmis-
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Fig. 2. Evolutionary dynamics along a trade-off between infected plant fecundity (bI) and seed transmission rate (p). The straight lines correspond to linear trade-off functions, i.e., p = g
(bI) = 1 − bI/B, with (A and B) B = 3, (C and D) B= 1.8. The dashed curves correspond to the associated functions g(bI)bI. The dots denote trait values maximizing g(bI)bI. The arrows
denote the direction of evolution. The light gray regions correspond to ≤ 10R (virus unable to invade). The darker gray regions correspond to bI ≤ 1, which leads to virus extinction
(Fig. 1). The thick curves correspond to numerical simulations of the evolutionary dynamics (Appendix B): (B) starting from bI ≈ 2.4, evolution selects for decreasing bI values until
reaching an evolutionary endpoint (bI = 1.5) corresponding to the maximum of g(bI)bI, (D) starting from bI ≈ 1.4, evolution selects for decreasing bI values until reaching bI = 1 where
the virus population goes extinct. Other parameter values: bH = 3, λ = 1, β= 10.

Fig. 3. Evolutionary branching of parasitic and mutualistic viral symbioses and their
long-run coexistence. We assumed a trade-off between transmission and virulence of the
form: β= f(b) = βmax exp(−k(b− bmin)). Parameter values: bH = 20, λ = 1, bmin = 10,
bmax = 30, p= 0.5, βmax = 10, k= 0.1.

Fig. 4. Evolutionary branching of parasitic and mutualistic viral symbioses and the
eventual exclusion of parasitism by mutualism. We assumed a trade-off between
transmission and virulence of the form: β = f(b) = βmax exp(−k(b− bmin)). Parameter
values: bH = 20, λ = 1, bmin = 10, bmax = 80, p = 0.5, βmax = 10, k= 0.1.
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sion (p= 1), there is a susceptible-free equilibrium corresponding to
virus fixation. It is stable if the threshold 0R for successful invasion of
uninfected plants is below one. However, numerical simulations
indicate that a stable coexistence state between uninfected and infected
plants does not exist for full vertical transmission. Instead, simulations
suggest that stable coexistence requires partial seed transmission
(p < 1).

Third, we have found bistability in this model. That is, the dynamic
behavior and the long-term solutions in particular depend on the initial
conditions. There are three different types of bistability.

(i) There is bistability between the virus-free and susceptible-free
equilibria, i.e., either infected or uninfected plants go extinct but
not both. This occurs if p = 1, bI > 1, < 10R and < 10R . It is
remarkable because the virus can infect the entire plant population
even though < 10R . However, virus fixation in this case requires
that healthy host plants have not reached their carrying capacity
and the initial density of infected plants is sufficiently large, see the
example in Fig. 1A.

(ii) There is bistability between an endemic coexistence equilibrium
and the virus-free equilibrium, i.e., either both uninfected and
infected plants coexist or infected plants go extinct. This has been
observed for p < 1, bI > 1, and < 10R . The virus persists in the
population in coexistence with uninfected plants, provided the
latter are away from the uninfected carrying capacity state and the
density of infected plants is sufficiently large, see the example in
Fig. 1B. That is, the infection can establish itself in the host
population even though < 10R .

(iii) There is bistability between the virus-free equilibrium and extinc-
tion, i.e., either the virus infects all plants or drives the entire plant
population to extinction. This has been observed for both full and
partial vertical transmission, < 10R , < 10R and bI < 1. The
latter condition means that infected plants cannot persist on their
own. If the virus is introduced in sufficiently large density of plants
that have not reached their uninfected carrying capacity state, the
virus drives the entire plant population extinct, see the examples in
Fig. 1C and D. Disease-induced host extinction is well-known to
occur in time-continuous models with frequency-dependent hor-
izontal transmission for the case > 10R (e.g. Getz and Pickering,
1983; Busenberg and van den Driessche, 1990), as virus transmis-
sion is ongoing even when the population density is close to zero.
In discrete-time models, host extinction caused by disease-related
mortality seems to have been less investigated (but see Franke and
Yakubu, 2008, who also consider > 10R ). Here, we have shown
that disease-induced host extinction can occur even if < 10R .

The occurrence of ecological bistability in an epidemiological model
as simple as the one considered here is remarkable for three reasons.
First, infection can persist in the population even if < 10R . This can be
particularly important if control measures to combat virus infections
are aimed at reducing the basic reproduction number below one,
because this will not be sufficient and a higher level of control will
be necessary. The reason for this apparent ‘failure’ of the basic
reproduction number is its derivation from the assumption that the
system is at virus-free equilibrium. However, this of course not always
the case, and one may even argue that this assumption rarely holds true
considering the plethora of perturbations in variable and stochastic
environments. That is, if the densities of infected and uninfected plants
are far from this equilibrium, the basic reproduction number does not
apply anymore and may grossly underestimate the possibility of virus
invasion. In particular, we have shown that if the density of infected
plants is high or the density of uninfected plants low, the virus is likely
to invade the population or even drive it extinct even if < 10R . Similar
observations have been made in epidemiological models with backward
bifurcations (e.g. Dushoff et al., 1998). In fact, numerical simulations
(not shown here) suggest that our model exhibits a backward bifurca-

tion as well.
Second, short-term dynamics can become particularly important if

the system is bistable. Fig. 5A shows the long-term total plant density as
a function of vector transmissibility β. For an intermediate parameter
range (0.29 < β < 0.33) there is bistability between the susceptible-
free and virus-free equilibrium. However, if we consider the plant
densities after short-term (Fig. 5B), they show a range of values
between the two equilibrium values. This is because the system
dynamics becomes very slow for some initial plant densities such that
they take very long to approach the equilibrium (there is an unstable
coexistence state which slows down the dynamics in its vicinity; cf.
Appendix A.1). Transients are therefore important if the system is
bistable, as they ‘diversify’ the values taken by the plant densities.
Moreover, due to this effect, the bistability region has effectively
‘expanded’ to neighboring parameter regions.

Third, there is no bistability in similar (and even more general)
continuous-time models possible (Zhou and Hethcote, 1994). The
simplest model with frequency-dependent transmission that we know
of and leads to bistability is of SEI type, i.e., has an extra compartment
of latent infections (Gao et al., 1995). In this model, bistability is
possible for complete disease-induced sterilization of the host popula-

Fig. 5. Total plant population density as a function of vector transmission parameter β.
(A) Long-term dynamics, approximated after 10,000 years, (B) short-term dynamics after
100 years. The threshold criteria = 10R and = 10R correspond to β≈ 0.33 and
β≈ 0.29, respectively. In between these parameter values, the system tends to either
the virus-free equilibrium with T = (bH − 1)/λ = 1 or the susceptible-free equilibrium
with T = (bI − 1)/λ = 0.5, depending on initial conditions. The color coding indicates
the infection prevalence. For each value of β, 100 initial conditions were drawn from a
pseudo-uniform random distribution. Parameter values: bH = 2, bI = 1.5, λ = 1, p= 1.
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tion (Gao et al., 1995, Sect. 5), i.e., in terms of our model parameters
bI = 0. Considering that a latent infection compartment introduces a
form of time delay in the disease and host reproduction dynamics, it
may not be too surprising that our discrete-time SI model and the
continuous-time SEI model show similar behavior.

4.1.2. Evolutionary analysis
The ecological model was used to explore the evolution of the

plant–virus symbiosis (parasitic or mutualistic). The main conclusions
from the evolutionary analysis are summarized below:

(i) Vertical (seed) transmission (p) versus virulence (defined as bH/bI):
evolution maximizes the product pbI, i.e., maximizes transmission
relative to virulence. Interestingly, such a trade-off can lead to virus
extinction in evolutionary time.

(ii) Horizontal (vector) transmission (β) versus virulence: evolutionary
branching and the subsequent coexistence of parasitic and mutua-
listic symbioses is possible, as well as the extinction of the parasitic
branch.

In the evolutionary simulations of vector transmission versus
virulence, we assumed a simple exponential trade-off function. Its
convex shape allows for richer evolutionary dynamics than linear or
concave trade-off forms. Consideration of other trade-off shapes (e.g.
linear) indicated that other outcomes are theoretically possible, such as
directional selection and convergence to a stable monomorphic evolu-
tionary endpoint (as expected from the mathematical analysis).
However, we never observed parasitism excluding mutualism after
evolutionary branching occurred. This might be because seed produc-
tion is a necessary condition for virus year-to-year persistence in our
annual plant model.

4.2. Limits and prospects

In this study, we focused on unconditional mutualism, i.e., when
infected plant fecundity is always greater than uninfected plant
fecundity. However, conditional mutualism occurs when infected plants
have lower fecundity than uninfected plants under favorable condi-
tions, and higher fecundity than uninfected plants under unfavorable
conditions such as water stress (Hily et al., 2016). Our model may be
extended to address the evolution of conditional mutualism. A possi-
bility would be to consider that bH is a random variable that can take
two values bH

min and bH
max, corresponding to unfavorable and favorable

conditions, respectively, with mean bH . One may then let
b b c b b v= + ( − ) −I H H H , where v (for virulence) is the possible loss
of fecundity due to infection, and c ∈ [0, 1] is a coefficient buffering the
variations of fecundity in infected plants, subject to selection (if c= 0,
the variance is zero). For instance, c = 0 implies infected plants have
constant fecundity regardless of environmental variability. Whether
and how such conditional mutualism would evolve is left for future
research.
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Appendix A. Additional analyses

A.1 Full vertical transmission

Focusing on the case p = 1 (full vertical transmission), model (5) reads:

H t

I t

( + 1) = ,

( + 1) = .

b H t P t
λT t

b I t H t P t
λT t

( ) ( )
1 + ( )
( ( ) + ( )(1 − ( )))

1 + ( )

H

I
(20)

If bI > 1, there exists a “susceptible-free” equilibrium (SFE) which is found by setting H= 0 and solving for I. The SFE value for I is

I b
λ

= − 1 .I

Linearizing the difference equation for the uninfected host H about the SFE, we obtain the basic reproductive number of an uninfected host
introduced into a fully infected population:

b
b

β= exp(− ).H

I
0R

The notation 0R stands for the dual of 0R (Hamelin et al., 2016). If > 10R then the SFE is unstable. If both > 10R and > 10R , then infected and
uninfected plants can invade each other when rare, so coexistence of uninfected and infected plants is protected (Kisdi and Geritz, 2003).

It appears that there is no stable coexistence equilibrium with both uninfected and infected plants. The ecologically relevant results are
summarized for bI > 1 and bI < 1.

In the case bI > 1, there exist both a VFE and a SFE. The two reproductive numbers equal

b
b

β b
b

β= (1 + ) and = exp(− ),I

H

H

I
0 0R R

respectively. It follows that

< 1.0 0R R

Therefore, > 10R and > 10R is impossible; coexistence of uninfected and infected plants is not protected. Moreover, in Section A.1.1 it is shown that
there exists an endemic equilibrium (EE) such that H, I > 0 if and only if < 10R and < 10R but it does not appear to be stable. In addition, it is
shown that if < 10R , then the SFE is locally stable. Both reproductive numbers less than 1 leads to ecological bi-stability. The three ecologically

F.M. Hamelin et al. Virus Research 241 (2017) 77–87

84



relevant cases are summarized below (see also Fig. 6).

(1) If < 10R and > 10R , then the VFE is globally stable.
(2) If < 10R and < 10R , then there is bi-stability of the VFE and the SFE (either infected or uninfected plants go extinct but not both).
(3) If > 10R and < 10R , then the SFE is globally stable.

For the case bI < 1, there is no SFE, only the VFE. The numerical results indicate that there are only two ecologically relevant cases.

(4) If < 10R , then there is bi-stability of the VFE and the extinction “equilibrium” (either infected plants go extinct or there is complete population
extinction).

(5) If > 10R , then the VFE is globally stable.

Simulations performed for q = 1− p≪ 1 (slightly partial vertical transmission) showed similar results to the case p= 1 with the exception that
the SFE becomes an endemic equilibrium (for which we have no explicit expression). Therefore, coexistence of uninfected and infected plants is
possible in this model.

A.1.1 Existence conditions of an endemic equilibrium
Model (5) has the following form:

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎡
⎣⎢

⎛
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⎞
⎠⎟

⎤
⎦⎥

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎤
⎦
⎥⎥

H t

I t

( + 1) =

( + 1) = .

b H t I t H t

λT t

I t H t

λT t

( ) exp − + qb ( ) + ( ) 1 − exp −

1 + ( )

pb ( ) + ( ) 1 − exp −
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H
βI t
T t

βI t
T t

βI t
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( ) I

( )
( )

I
( )
( )

We focus on the case p = 1− q= 1 (full vertical transmission). Let

H H
H

I I
H

* = , * = .

The dimensionless model (asterisk notation has been dropped) simplifies to

( )
H t

b H t

b H t I t
( + 1) =

( )exp −

1 + ( − 1)( ( ) + ( ))

H
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H t I t

H
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There exist at most three equilibria:

⎛
⎝⎜

⎞
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b
b

h i(1, 0), 0, − 1
− 1

, and ( , ).I

H

Consider the proportions i i h iˆ = /( + ) and h h h iˆ = /( + ). Then i hˆ + ˆ = 1. If bI ≥ 1, then the total plant population is bounded below by a positive
constant (Appendix A.2). If the population does not go extinct, then existence of a unique î , i0 < ˆ < 1 implies existence of a unique (h, i). We derive
conditions for existence of a unique î , i0 < ˆ < 1. Using the notation h, i and î in Eq. (21), it follows that b h i b e1 + ( − 1)( + ) = .H H

βi− ˆ Substituting this
latter expression into Eq. (22), we obtain an implicit expression for î :

Fig. 6. The three ecologically relevant cases for p= 1 and bI > 1, with b b β= ( / )(1 + )I H0R and b b β= ( / )exp(− )H I0R (see text). The range of β values for which ecological bistability
occurs increases with bH/bI (virulence).

F.M. Hamelin et al. Virus Research 241 (2017) 77–87

85



i b i e
b e

ˆ = (1 − (1 − ˆ) )I
βi

H
βi

− ˆ

− ˆ

which can be expressed as

⎛
⎝⎜

⎞
⎠⎟i b

b
eˆ − 1 + 1 = .H

I

βî

(23)

The two curves ( )f i i(ˆ) = ˆ − 1 + 1b
b1
H
I

and f i e(ˆ) = βi
2

ˆ intersect at î = 0 so that a unique positive solution exists î , i0 < ˆ < 1, if and only if the
following conditions hold:

b
e

b b
β

< <
1 +

H
β I

H

( f f′ (0) > ′ (0)1 2 and f1(1) < f2(1)). The left side of the inequality is equivalent to < 10R and the right side is equivalent to < 10R .

A.2 Plant population is bounded

For model (1)–(4), it is shown that the total plant population is bounded and if the average number of seeds per infected plant is greater than one,
bI > 1, then the plant population always persists.

The total plant population, T(t) = H(t) + I(t) is bounded below by zero; H(t) and I(t) are nonnegative. In addition, we show that the total
population is bounded above and for the case bI > 1, the total population is bounded below by a positive constant. The total plant population
satisfies the inequality

T t b T t
λT t

f T t( + 1) ≤ ( )
1 + ( )

= ( ( )),H
H

since bH > bI. Comparing the solution T(t) with the solution of the difference equation, x(t+ 1) = fH(x(t)), where x(0) = T(0) > 0, it follows that
T(1) ≤ fH(T(0)) = fH(x(0)) = x(1). Since fH(x) is monotone increasing for x ∈ [0, ∞), fH(T(1)) ≤ fH(x(1)), leads to T(2) ≤ x(2) and in general, from
induction it follows that T(t) ≤ x(t) for t ∈ {0, 1, 2, 3, … }. The fact that x(t) approaches H b λ= ( − 1)/H monotonically implies T t T H( ) ≤ max{ (0), }.

A similar argument applies in the case bI > 1 to show that the total plant population is bounded below by a positive constant, e.g., uniform
persistence. The inequality bH > bI leads to the reverse inequality for the total plant population:

T t b T t
λT t

f T t( + 1) ≥ ( )
1 + ( )

= ( ( )).I
I

Comparing the solution of T(t) with the solution of y(t+ 1) = fI(y(t)), T(0) = y(0), leads to T(t) ≥ y(t) for t ∈ {0, 1, 2, … }. Since bI > 1, the
solution y(t) converges monotonically to I b λ= ( − 1)/ > 0I which implies T t T I( ) ≥ min{ (0), }.

A.3 Absence of vector transmission

Focusing on the case β = 0 (no vector transmission), model (5) reads:

H t

I t

( + 1) = ,

( + 1) = ,

b H t p b I t
λT t

I t
λT t

( ) + (1 − ) ( )
1 + ( )

pb ( )
1 + ( )

H I

I
(24)

where T(t) = H(t) + I(t). There exist at most three equilibria:
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⎞
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b
λ

h
b p

λ b b
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b
λ b b

(0, 0) , − 1 , 0 , =
(1 − )(1 − pb )

( − )
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(pb − )(1 − pb )
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If bH > bI, then h > 0 implies pbI < 1, and i > 0 thus implies pbI > bH which is impossible since bH > 1. If bI > bH then h > 0 implies
pbI > 1 and i > 0 thus implies pbI > bH > 1. Therefore, the endemic equilibrium (h, i) existence requires pbI > bH.

Appendix B. Evolutionary simulations

Evolutionary computations in Figs. 2–4 were realized from the multi-strain model (7) using the following algorithm. The evolving phenotype b
ranges from bmin to bmax, the biologically feasible minimum and maximum plant host fecundity values. The interval [bmin, bmax] is divided into a
finite number of subintervals (here 100), each with length Δb. The evolutionary dynamics are governed by the following iteration scheme. The
scheme is initiated with a given value of b equal to one of the endpoints of the subintervals. Next, the ecological equilibrium is computed from the
multi-strain model (here after a fixed time horizon of 1000 years), then a small mutation± Δb occurs in b with equal likelihood of being smaller or
larger than b. Time is advanced by one unit in evolutionary time (1000 years) and b is changed to either b + Δb or b− Δb. The evolutionary process
continues with this new b value.
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