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Abstract
Threshold-based harvesting strategies tend to give high yields while protecting the
exploited population. A significant drawback, however, is the possibility of harvesting
moratoria with their socio-economic consequences, if the population size falls below
the threshold and harvesting is not allowed anymore. Proportional threshold harvesting
(PTH) is a strategy, where only a fraction of the population surplus above the thresh-
old is harvested. It has been suggested to overcome the drawbacks of threshold-based
strategies. Here, we use discrete-time single-species models and rigorously analyze
the impact of PTH on population dynamics and stability. We find that the popula-
tion response to PTH can be markedly different depending on the specific population
model. Reducing the threshold and allowing more harvest can be destabilizing (for the
Ricker and Hassell map), stabilizing (for the quadratic map), or both (for the gener-
alized Beverton–Holt map). Similarly, management actions in the form of increasing
the threshold do not always improve population stability—this can also be due to
bistability. Our results therefore emphasize the importance of a rigorous analysis in
investigating the impact of PTH on population stability.
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1 Introduction

Sustainable harvesting has to balance at least two demands that seemingly conflict
each other, namely to protect biological resources on the one hand and to produce
large yields on the other hand. Harvesting strategies adjust the target harvest from
year-to-year based on the population size and potentially other economic, social, or
environmental conditions. The most common and simplest harvesting strategies spec-
ify the target harvest as a function of the population size only (Getz and Haight 1989;
Hilborn and Walters 1992; Punt 2010). Examples include constant-yield harvesting,
proportional harvesting, and threshold harvesting (e.g. Lande et al 2001; Sinclair et al
2006).

Proportional threshold harvesting (PTH) is a strategy, where a constant proportion
of the surplus of the population above a set threshold is harvested. If the population is
below the threshold, no harvesting takes place—which allows the resource to recover
at the highest natural rate when being below the threshold. Proportional threshold
harvesting has been used to manage U.S. west coast pelagic species (Pacific Fishery
Management Council 1998), and it has been suggested for the management of brown
bears in Norway (Tufto et al 1999), wolverines in Scandinavia (Sæther et al 2005),
and Eurasian lynx in Norway (Sæther et al 2010). It has also been considered as a
harvesting strategy for Pacific whiting (Ishimura et al 2005) and Norwegian spring-
spawning herring (Conrad et al 1998; Kaitala et al 2003; Enberg 2005; Lillegård et al
2005).

The term ‘proportional threshold harvesting’ seems to go back toEngen et al (1997).
They proposed this strategy when there is high uncertainty in population estimates.
The same strategy emerged in simulations by Clark and Kirkwood (1986). Even more
generally, PTH arises whenever the harvest is a linear function of the population size
and the vertical intercept is negative (Hilborn andWalters 1992, pp 456), an assumption
often made by regulators and resource managers (Homans and Wilen 1997; Conrad
et al 1998). Furthermore, PTH can be seen as a special case of the “40–10” rule,
which is used to manage U.S. west coast groundfish (see Deroba and Bence 2008, and
references therein).

PTH includes twowell-knownharvesting strategies as special cases. First,we obtain
threshold harvesting (TH) when the entire surplus of the population above the thresh-
old is harvested. This strategy is usually characterized by high average yields and
reasonable stock protection but also by high variability in yield. Second, we obtain
proportional harvesting (PH) when the threshold is zero. This strategy is usually char-
acterizedby lower averageyields andhigher extinction riks but also by lower variability
in yield. It thus appears that high yields and safe population levels almost always appear
to come at the cost of high variability in yield (Ricker 1958; Gatto and Rinaldi 1976;
Reed 1979; Hall et al 1988; Quinn II et al 1990; Lande et al 1995, 1997).

PTH seems to unite attractive features from both threshold harvesting in form of
high yields and safe populations and from proportional harvesting in form of little
variability in yield (Engen et al 1997; Lande et al 2003; Enberg 2005). The reduced
variability in yield is due to less harvest moratoria, which are enforced when the
population falls below the threshold. Temporary fisheries closures can be a major
economic problem including social and political issues (Hilborn and Walters 1992;
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Steele et al 1992), which is why PTH may overcome some of the biggest drawbacks
of threshold-based harvest policies. Moroever, PTH tends to allow for lower threshold
values so that the population can fluctuate over a wider range of densities. This is
beneficial for a more robust and adaptive population assessment (Walters 1986). PTH
also seems to be rather robust against observation errors (Engen et al 1997) as well as
parameter uncertainties (Fieberg 2004). Lande et al (1997) have therefore argued that
objections against threshold-based harvesting strategies in the case of PTH lose much
of their force.

Surprisingly, simulation studies of the Norwegian spring-spawning herring fish-
ery, which is characterized by heavy fluctuations caused by positively autocorrelated
environmental stochasticity, exhibit mixed results. In an unstructured model, Kaitala
et al (2003) could not find the expected superiority of PTH, as none of the considered
strategies (PH, TH, PTH) performed significantly better than the other. By contrast,
using age-structured simulation models, Enberg (2005) and Lillegård et al (2005)
found that PTH performed best among these strategies. A general evaluation of har-
vesting strategies is difficult, as their performance depends on the evaluation criteria
used, errors in population estimates, uncertainties in policy parameters, and the type
of environmental fluctuations (Milner-Gulland et al 2001; Deroba and Bence 2008).
The current theory on PTH relies to a large degree on diffusion models, assuming
that any change in population size is small and ignoring delay effects. Fluctuations
are assumed to be caused by external forces, thus excluding endogeneously generated
cycles or chaos (Engen et al 1997; Lande et al 1997). Yet, both causes of population
oscillations have profound implications for the optimal management of populations
(Hudson and Dobson 2001; Kokko 2001; Sæther et al 2001; Barraquand et al 2017).

Hence, there remain gaps for rigorous mathematical results on PTH in populations
that can change markedly from one generation to the next one (e.g., as is typical for
overcompensation) and especially for population cycles that emerge inherently due to
time lags, nonlinearities, or species interactions. Here, we study PTH in a number of
discrete-time single species models that can exhibit regular or irregular oscillations
due to overcompensation. Our focus will be on how harvesting affects the dynamic
stability, and how this impacts population size, yield, variability of yield, and the
possibility of multistability.

2 Themodel

Webeginbydescribingpopulationgrowth in the absenceof harvesting and then include
proportional threshold harvesting. By passing, we will point out the differences of this
harvesting strategy compared to proportional harvesting (also called constant-effort
harvesting) and threshold harvesting (also called fixed escapement).

Let xn ≥ 0 be the population density at time step n, n = 0, 1, 2 . . .. In the absence
of harvesting, we assume that population growth can be described by the difference
equation

xn+1 = f (xn), (2.1)
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(a) (b) (c)

Fig. 1 Different harvesting strategies illustrated by sketching catch or harvest mortality (red solid lines) as
a function of population density or biomass. a proportional threshold harvesting; b threshold harvesting; c
proportional harvesting. The blue dotted lines indicate the identity diagonal line. T is the threshold value,
and the harvest proportion q corresponds to the slope of the red lines (color figure online)

and an initial value x0 > 0. The map f is the production (or stock–recruitment curve),
for which we assume typical conditions for single-species population models:

(A) f : [0,∞) → [0,∞) is continuous, has a uniquepositivefixedpoint K , f (x) > x
for x ∈ (0, K ), and 0 < f (x) < x for x > K .

Under threshold harvesting, the population dynamics is described by the difference
equation

xn+1 = min{ f (xn), T } := gT (xn) =
{
f (xn) if f (xn) ≤ T ,

T if f (xn) > T ,
(2.2)

where T > 0 is the threshold. That is, all excess individuals of the population above
the threshold are harvested so that only a population density equal to the threshold
escapes the harvest and remains. If the population density (after reproduction) is below
the threshold, no harvesting takes place.

With proportional threshold harvesting, only a fraction q( f (x) − T ) of the sur-
plus above the threshold is harvested, where q ∈ (0, 1] is the (asymptotic) harvest
proportion. The mathematical model is given by

xn+1 = F(xn) :=
{
f (xn) if f (xn) ≤ T ,

f (xn) − q( f (xn) − T ) if f (xn) > T .
(2.3)

The map F(x) can be written as

F(x) = Fq,T (x) := min{ f (x), (1 − q) f (x) + qT }

and depends on the two harvesting parameters q and T . In order to avoid complicated
notation, we only refer to this dependence if it is needed. For example, for a fixed
threshold value T , we sometimes refer to F as Fq to emphasize its dependence on the
harvest proportion q.

The model with threshold harvesting (2.2) is a particular case of (2.3) for q = 1,
that is gT = F1,T . It is worth noticing that (2.3) also contains proportional harvesting
as a particular case when T = 0. See Fig. 1 for an illustration.
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Fig. 2 Diagrams showing the map Fq for a Ricker function f (x) = x e2.6(1−x) and different harvest
proportions q: no harvest for q = 0, threshold harvesting for q = 1, and half of the surplus is harvested
when q = 0.5. a T = 1.2 > K , b T = 0.8 < K

Equation (2.3) has been considered in the literature under different names. For
example, Stoop and Wagner (2003) call it softer limiter control, while they refer to
the case q = 1 as hard limiter control. Franco and Perán (2013) call (2.3) target-
oriented threshold control, since the harvesting strategy can be seen as a combination
of threshold harvesting and target-oriented control (Dattani et al 2011; Franco and Liz
2013).

3 Stability results

In this section we study harvesting-induced stability switches. With stability switch,
we refer to a change in the local asymptotic stability of the nontrivial equilibrium. We
will focus on the case of lowering the threshold T , thus increasing harvesting pressure,
but wewill also investigate the impact of increasing the harvesting proportion q, which
also increases harvesting pressure.

For convenience, we introduce the following hypothesis:

(H) f : [0,∞) → [0,∞) is a twice differentiable map satisfying assumption (A),
and there exists d > 0 (d can be ∞) such that f ′(x) > 0 in (0, d), and f ′(x) < 0
in (d, K ) (if d < K ). Moreover, f ′′(x) < 0 for all x ∈ (0, d).

Assumption (H) is satisfied by usual compensatory models (e.g., Beverton–Holt) and
overcompensatory models such as the Ricker model, the generalized Beverton–Holt
model (Maynard Smith and Slatkin model), and the Hassell model. For the Beverton–
Holt model, d = ∞ in (H). We can also consider examples such as the quadratic map,
where f : [0, A] → [0, A], 0 < A < ∞, and the rest of the conditions hold.

We distinguish two cases, depending on the relative size of the threshold T and the
nontrivial equilibrium K of the unharvested population.

• Case I: T > K . In this case, the map f (x) without harvesting and the map F(x)
with harvesting share the same positive equilibrium K (see Fig. 2a). Since F ′(K ) =
f ′(K ), the local asymptotic stability of the equilibrium does not depend on the
parameters q and T . Moreover, if K is a global attractor for (2.1) in the absence of
harvesting, then K is also a global attractor of (2.3) in the presence of PTH, for all
q ∈ (0, 1] and T ≥ K (see Proposition A.3 in “Appendix A.4”).
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Fig. 3 Diagram showing the
map Fq for a Beverton–Holt
function f (x) = 2.6x/(1 + x),
T = 0.8, and different values
of q: no harvest for q = 0,
threshold harvesting for q = 1,
and half of the surplus is
harvested when q = 0.5
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• Case II: T < K . In this case, under hypothesis (H), model Fq with PTH has a
unique positive fixed point K1 = K1(q, T ) for each q ∈ (0, 1), and K1 ∈ (T , K )

(see Proposition A.1 in “Appendix A.1”). It can be checked that the equilibrium
K1(q, T ) is a decreasing function of q for each fixed value of T < K , and it is
an increasing function of T for every fixed value of q ∈ (0, 1) (see Franco and
Liz 2013 and Fig. 2b). Moreover, for a fixed value of T ∈ [0, 1), increasing q
is stabilizing (Franco and Liz 2013, Theorem 1). By stabilizing we mean that an
unstable equilibrium becomes locally stable for sufficiently large values of q.

If F ′(K1) ≥ 0, i.e. population dynamics at equilibrium does not show overcom-
pensation, then K1 is globally asymptotically stable (see “Appendix A.2”). This is the
case, for example, in the Beverton–Holt model (see Fig. 3), but also for overcompen-
satory population models when the equilibrium is on the increasing branch of the map
and shows local undercompensation.

If T = K , then increasing q cannot destabilize a stable positive equilibrium, but it
can stabilize it, as we will show later.

Therefore, in the following we assume that T ≤ K and F ′(K1) < 0. In this case,
the existence of stability switches as the threshold T is varied is directly related to
changes in the derivative of the map f at the positive equilibrium K1 = K1(q, T )

of F . A related discussion can be found in Doebeli (1995) who studied the potentially
stabilizing effects of immigration of a constant number of individuals into a population
(see also Stone and Hart 1999 for further discussions).

For simplicity, we assume that the positive fixed point of f is K = 1, which can
always be achieved by a simple change of variables y = x/K .

We will now consider different population growth models. We will find that low-
ering the threshold T can

(i) stabilize the equilibrium when f is concave on (0, 1) like in the quadratic model;
(ii) destabilize the equilibrium when f is hump-shaped and has an inflection point

on the decreasing branch like in the Ricker and Hassell model; and
(iii) both stabilize and destabilize the equilibrium when f is as flexible as in the

generalized Beverton–Holt or Maynard Smith and Slatkin model.

3.1 Quadratic model

If f is concave on (0, 1), then PropositionA.2 in “Appendix A.3” ensures that decreas-
ing T cannot destabilize the equilibrium.
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Fig. 4 a Bifurcation diagram of the PTH model (2.3) for the quadratic map with r = 4 and q = 0.35,
showing a situation when decreasing T is stabilizing. The red dashed line corresponds to the unstable fixed
point. b Stability diagram of (2.3) in the parameter plane (T , q) for the quadratic map with r = 4 (color
figure online)

A simple example of a concave function is provided by the quadratic map, which,
after normalization, reads

f (x) = x (r − (r − 1)x) , r > 1, 0 ≤ x ≤ r/(r − 1). (3.1)

It is well known that the positive equilibrium K = 1 of f is globally asymptotically
stable if 1 < r ≤ 3 and unstable if r > 3. In the latter case, a stability switch as T is
decreased (stabilizing the equilibrium K1) occurs for all q that satisfy

r − 3

r
< q <

r − 3

r − 2

(see Proposition A.8 in “Appendix A.6”).
A particular example with r = 4 and q = 0.35 ∈ (0.25, 0.5) is shown in Fig. 4a.

Here, the stability switch correponds to a supercritical period-doubling bifurcation.
Its location in the two-parameter plane (T , q) is shown in Fig. 4b and defines the
boundary of the stability region.

3.2 Ricker model

In contrast with the previous example, many population maps are not concave in
the whole interval (0, 1). Instead, there is an inflection point z < 1, which changes
the potential population responses with respect to stability when the threshold T is
decreased. This is the case for the Ricker and the Hassell model. Here, we focus on
the Ricker map, which reads in normalized form

f (x) = x er(1−x), r > 0. (3.2)

The positive equilibrium K = 1 of f is globally asymptotically stable if r ≤ 2 and
unstable if r > 2. There is a unique inflection point z = 2/r , which is obviously less
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Fig. 5 Stability diagram of the
PTH model (2.3) for the Ricker
map f (x) = x er(1−x), with
r = 2.6. Dashed red lines
correspond to the limit cases
q = 0 (original map (2.1)
without any harvesting), q = 1
(TH), and T = 0 (PH) (color
figure online)
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Fig. 6 Bifurcation diagrams for (2.3) with f (x) = x er(1−x), r = 2.6, and different values of q. Red
dashed lines correspond to unstable fixed points and unstable 2-periodic orbits. For more details, see the
main text (color figure online)

than 1 if r > 2. In “Appendix A.5” we prove that a stability switch as T is decreased
can only occur if r > 2 and

r − 2

r − 1
< q < 1 − e2−r . (3.3)

Moreover, for fixedvalues of r andq satisfying (3.3), decreasing T destabilizes the pos-
itive equilibrium K1 of F . Figure 5 shows the stability diagram of the PTHmodel (2.3)
for the Ricker map with r = 2.6. Note that in the limit case of threshold harvesting
(q = 1) the equilibrium is always globally asymptotically stable if T ≤ K (see
Lemma 2 in “Appendix A.2”).

Figure 6 shows a selection of different bifurcation diagrams with varying thresh-
old T , each for a different value of the harvesting proportion q.

• For a harvesting proportion q = 0.8 (Fig. 6a), the equilibrium K1 is asymptotically
stable for all T < 1. As the threshold crosses the critical point T = 1, which is the
scaled carrying capacity, the equilibrium undergoes a supercritical flip bifurcation.
We notice that the bifurcation is not smooth, in the sense that the local stability of
the equilibrium changes abruptly from F ′(1) < −1 for T > 1 to F ′(1) > −1 for
T < 1.
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• For a harvesting proportion q = 0.5 (Fig. 6b), the equilibrium K1 is also asymp-
totically stable for all T < 1, but it undergoes a subcritical flip bifurcation as the
threshold crosses the critical point T = 1. As a consequence, there is bistability:
for values of T close to 1, the stable equilibrium K1 coexists with an attracting
2-periodic orbit.

• For a harvesting proportion q = 0.4 (Fig. 6c), the equilibrium K1 is destabilized
in a supercritical flip bifurcation at a threshold value below T = 1. In addition, the
subcritical flip bifurcation at T = 1 still persists. For some values of T , bistability
is observed either between K1 and a 2-periodic attractor, or between two 2-periodic
attractors.Note that the supercritical flip bifurcation at T < 1,when F ′(K1) = −1,
occurs smoothly in this case.

As a consequence of the previous results for the Ricker model, we observe that a
more protective strategy (choosing larger values of the threshold T ) tends to stabilize
the population for intermediate harvesting proportions q (Fig. 6c). However, setting
the threshold above the carrying capacity K = 1 may destabilize the population
again. Moreover, the stabilized equilibrium may coexist with another attractor, so that
sufficiently large perturbations could shift the population to a periodic cycle rather
than a fixed point. If we consider the Hassell map, the dynamic behavior of the PTH
model (2.3) is very similar to the one we have described for the Ricker map. Indeed,
for the normalized Hassell model

xn+1 = xn(1 + b)m

(1 + bxn)m
, b > 0, m > 1,

the positive equilibrium K = 1 is globally asymptotically stable if mb ≤ 2(1 + b)
(Liz 2007) and unstable if mb > 2(1 + b). In the latter case, the unique inflection
point z = 2/(b(m + 1)) is less than 1.

3.3 Generalized Beverton–Holt model

The previous examples show that decreasing the threshold T below the carrying capac-
ity can have either stabilizing (quadratic map) or destabilizing effects (e.g., Ricker and
Hassell map) on the positive equilibrium of a population subject to PTH. In this sub-
section we show that actually two stability switches can occur as T decreases from
T = 1 to T = 0. We consider the population map proposed by Maynard Smith and
Slatkin (1973), which generalizes the Beverton–Holt model as follows:

f (x) = ax

1 + (a − 1)xm
, a > 1, m > 1. (3.4)

The equilibrium K = 1 of f is globally asymptotically stable if either m ≤ 2, or
m > 2 and a ≤ m/(m − 2), and it is unstable if m > 2 and a > m/(m − 2). Stability
switches for decreasing thresholds T can only occur in the latter case. We next show
that the flexibility provided by the two parameters in the model allows for different
scenarios.
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Fig. 7 Stability diagram of the PTH model (2.3) for a generalized Beverton–Holt map given by (3.4), with
a m = 6, b m = 2.5, and different values of a. In each case, the equilibrium is stable above the stability
boundary and unstable below it

It can be checked that the map f defined in (3.4) is concave in (0, 1) if and only
if f ′′(1) ≤ 0, which is equivalent to the condition a ≤ 2m/(m − 1). In this case, the
situation is similar to that of the quadratic map: decreasing the threshold T can have a
stabilizing effect. An example is shown in Fig. 7a for m = 6 and a = 2 < 12/5, and
in Fig. 8a.

The unique positive equilibrium K1 of the PTHmodel (2.3) with f defined by (3.4)
is locally asymptotically stable if and only if (1 − q) f ′(K1) ≥ −1. In the limit cases
T = 0 and T = 1, simple calculations allow us to obtain an analytic local stability
condition in terms of a, m, and q:

• For T = 0 (PH), K1 is asymptotically stable if and only if

q ≥ 1 − m

(m − 2)a
=: q1(a).

• For T = 1 (TH), it is clear that K1 = 1, and the limit form of the stability condition
for K1 is given by the inequality (1 − q) f ′(1) > −1, which is equivalent to

q >
(m − 2)a − m

(m − 1)a − m
=: q2(a).

In the previous examples, the corresponding values of q1 and q2 satisfy themonotonic-
ity conditions q1 < q2 (for the quadratic map) or q1 > q2 (for the Ricker map). For the
generalized Beverton–Holt map (3.4), all cases are possible. Actually, q1(a) < q2(a)

if and only if a < m. If we choose a = m > 3, then q1(a) = q2(a) = (m−3)/(m−2),
and we easily find examples with two stability switches as T is decreased. The case
a = m = 6 is shown in Figs. 7 and 8b. If 2 < m < 3 < a, then q1(a) > q2(a), and we
observe a population stability response to decreasing T similar to the one displayed
by the Ricker model; for example, the case m = 2.5 and a = 8 is shown in Figs. 7
and 8c.
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Fig. 8 Bifurcation diagrams for the PTH model (2.3) with the generalized Beverton–Holt map f (x) =
ax/(1 + (a − 1)xm ), using T as the bifurcation parameter. Red dashed lines correspond to unstable fixed
points and unstable 2-periodic points. aDecreasing T is stabilizing for a = 2,m = 6, and q = 0.4. b There
are two stability switches for a = 6, m = 6, and q = 0.82. c Decreasing T is destabilizing for a = 8,
m = 2.5, and q = 0.2 (color figure online)

Table 1 Summary of results

K asymptotically stable K unstable

T > K K1 asymptotically stable K1 unstable

T ≤ K , q = 1 K1 asymptotically stable K1 asymptotically stable

T ≤ K , q < 1 K1 asymptotically stable Increasing q is stabilizing; decreasing T can
stabilize, destabilize, or produce two stability
switches (Subsects. 3.1, 3.2, and 3.3)

T = 0a K1 asymptotically stable Increasing q is stabilizing

aLiz (2010)
T is the threshold, q is the harvesting proportion, K is the positive equilibrium (carrying capacity) of the
unharvested population, and K1 is the equilibrium of the harvested population. The limit cases q = 1 and
T = 0 correspond to threshold harvesting and proportional harvesting, respectively

Table 1 provides a summary of the results for the PTH strategy (2.3) with compen-
satory and overcompensatory models satisfying some mild assumptions considered in
this paper. It also includes results for the special cases of proportional harvesting and
threshold harvesting for comparison.

4 Maximum yield and harvest frequency

With proportional threshold harvesting, the yield obtained in generation n is given by

Yn =
{
0 if f (xn) ≤ T ,

q( f (xn) − T ) if f (xn) > T .

If assumption (A) holds, T < K , and the equilibrium K1 of the PTH model (2.3) is a
global attractor, then the asymptotic value for the yield is Y = q( f (K1) − T ). Since,
by definition, K1 = F(K1) = (1−q) f (K1)+qT , we can write the asymptotic yield
as
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Fig. 9 The maximum
sustainable yield (MSY) is
attainable for populations with
small growth parameters and for
large harvest proportions. PTH
model (2.3) with the Ricker map
f (x) = x er(1−x). The curve
shown is r∗ from (4.2)
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Y = q( f (K1) − T ) = f (K1) − K1.

Thus, the maximum sustainable yield (MSY) is attained when the equilibrium K1
maximizes the function f (x) − x , that is, when f ′(K1) = 1 (assuming f is continu-
ously differentiable). In particular, for given values of r and q, the MSY can be only
attained if the system

f ′(x) = 1, (1 − q) f (x) + qT = x (4.1)

has a solution (x, T ) with x > 0, T ∈ (0, K ).
For the normalized Ricker map f (x) = x er(1−x), we have K = 1, and the MSY

can be attained if and only if

r < q − ln(1 − q) := r∗ (4.2)

(see Proposition A.9 in “Appendix A.7”). Notice that in the limit case q = 1 (TH),
condition (4.2) always holds, and therefore theMSY can be attained for all populations
with any value of r . For PTH with q < 1 and r > r∗, however, the MSY cannot
be attained. That is, in fast growing populations and for large harvest proportions,
the threshold T cannot be chosen optimally in the sense of maximizing the yield.
According to condition (4.2), the higher the growth parameter, the larger the harvest
proportion required to attain the MSY (see also Fig. 9). If the MSY is not attainable,
the highest yield will be obtained by choosing the boundary condition T = 0, which
corresponds to PH (see below for examples).

If the population is oscillatory, then additional localmaxima for the yield can appear,
for threshold values above the carrying capacity.

In the general case, it is difficult to carry out a rigorous theoretical analysis of the
yield. Some phenomena as bistability, the lack of smoothness of the return map F ,
and the different bifurcations observed as T is varied have a strong influence on the
behavior of the yield depending on the model parameters.

In the following, we illustrate our discussion with some examples of the PTH
model (2.3) with the normalized Ricker map f (x) = x er(1−x).
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Fig. 10 Asymptotic values (blue solid lines) of the yield for (2.3) with the Ricker map f (x) = x er(1−x).
In the top row, r = 1.5 for which the positive equilibrium is a global attractor; in the bottom row, r = 2.5
which allows for instabilities. a We fix q = 0.8 and plot the yield as the threshold T is increased from
T = 0 to T = 1. In this case, r < r∗ = 0.8 − ln(0.2) ≈ 2.40944, so the MSY is attained at a positive
value of T . b We fix T = 0.2 and plot the yield as q is increased from q = 0 to q = 1. c We fix q = 0.8.
Since r = 2.5 > r∗, the MSY is attained at the limit case T = 0. For T > 1, the positive equilibrium is
unstable and the red dashed line indicates the yield when intervention occurs, but it takes place only every
other year. d For T = 0.2, a flip bifurcation occurs as q passes the critical value q∗ ≈ 0.3905. The red
dashed lines correspond to the yield at odd and even years when the population is oscillatory (q < q∗). In
this case, harvesting occurs every year (color figure online)

First we choose q = 0.8, so that r∗ = 0.8 − ln(0.2) ≈ 2.40944.

• For r = 1.5 < r∗, the equilibrium K1 under PTH (2.3) is always a global attractor
for T ∈ [0, 1) (see Proposition A.4 in “Appendix A.4”). Moreover, for T ≥ 1, the
equilibrium is K1 = 1, and therefore f (K1) = 1 ≤ T , which implies that there
is no yield. For T < 1, the MSY is attained at T ≈ 0.251, for which system (4.1)
has a solution x ≈ 0.397, giving a yield Ymax ≈ 0.58386. See Fig. 10a.

• For r = 2.5 > r∗, the MSY is not attained at any positive threshold value T ,
and the yield is a decreasing function of T for T ∈ (0, 1). For T > 1, there
is a 2-periodic attractor, and a new local maximum for the yield is attained. We
emphasize that the periodic attractor {p1, p2} satisfies f (p1) > T > f (p2), and
therefore harvest occurs only once every two years. This means that the asymptotic
value for the average annual harvest is Ȳ = q( f (p1) − T )/2. See Fig. 10c.
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Next, for a fixed value of r , the MSY condition (4.2) is fulfilled for q close enough
to 1. Thus, if the positive equilibrium under PTH (2.3) is a global attractor, the MSY
can be always attained for a suitable value of q.

• For the stable case r = 1.5 and T = 0.2, the MSY is attained for q ≈ 0.7478,
with an approximate value of Ymax ≈ 0.5838. This case is represented in Fig. 10b.

• For r = 2.5 and T = 0.2, the positive equilibrium is unstable for 0 < q < q∗ ≈
0.3905 and asymptotically stable if q∗ < q < 1. Our simulations indicate that the
equilibrium is globally attracting in the latter case, and there is a 2-periodic cycle
attracting all nontrivial positive solutions if 0 < q < q∗. Moreover, if we denote
the 2-cycle by {p1, p2}, we get the inequalities T < f (p2) < f (p1). This means
that, contrary to what happens in the case q = 0.8 discussed above, harvest occurs
every year. See Fig. 10d, where we plot the average yield depending on the harvest
proportion.

5 Discussion and conclusions

Proportional threshold harvesting has been considered as the optimal harvesting
strategy among proportional harvesting and threshold harvesting in terms of yield,
maximum yield, population level and risk, and the variability of risk (e.g. Engen et al
1997; Lande et al 1997; Enberg 2005). Here, we have investigated the impact of
PTH on the stability of population dynamics and on yield and harvesting frequencies.
Increasing harvesting pressure, by reducing the threshold, can have a stabilizing effect
(in the case of the quadratic map), a destabilizing effect (in the case of the Ricker and
Hassell maps), or both (in the case of the generalized Beverton–Holt map).

In general, existing theory considers increased harvesting pressure to have a desta-
bilizing impact on populations with externally generated fluctuations (Beddington and
May 1977; May et al 1978). When population fluctuations are internally generated, as
is the case considered here, current theory considers harvesting to have a stabilizing
effect (Milner-Gulland and Mace 1998; Jonzén et al 2003). In this paper we have
shown for the first time that harvesting can destabilize equilibria in models as simple
as the Ricker or Hassell map, i.e., in populations with overcompensation. So far, this
was only known for models that additionally included iteropacy (Liz 2010; Liz and
Pilarczyk 2012; Liz and Ruiz-Herrera 2012; Cid et al 2014; Liz and Hilker 2014),
carry-over effects (Liz and Ruiz-Herrera 2016), or seasonal density dependence (Liz
2017).

In PTH, there are twoways to increase harvestingmortality, namely by reducing the
threshold or by increasing the harvesting proportion.We have found that the latter case
always has a stabilizing effect. Hence, it clearly matters for stability how and at which
population densities harvesting pressure is varied. Establishing thresholds is thought
to be a precautionary measure, preventing risk of overexploitation and promoting
persistence (FAO 1995; Ludwig 1998; Quinn II and Deriso 1999; ICES 2011). The
destabilizing effect of increasing the threshold, as observed for the quadraticmap and in
some parameter ranges of the generalized Beverton–Holt map, is therefore particularly
concerning. Similarly, in the case of the Rickermap, increasing the threshold canmove
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the population from a stable equilibrium to the bistability region (see Fig. 5). In the
bistable region, the population can be destabilized by strong enough perturbations.
Again, an increased threshold does not necessarily promote stability.

For the results in this paper, we provide full analytic proofs for the Ricker map and
the quadratic maps in the Appendix. The results for the other population maps are also
rigorous, although we do not provide analytic proofs; for the Hassel map the proofs
are similar to the ones for the Ricker map; and for the generalized Beverton–Holt map
we only need examples and analytic proofs would be hard to write.

All populationmodels considered in this paper, except for theBeverton–Holtmodel,
are unimodal. These models are often assumed to behave similarly. Yet, the dynamic
responses to increased harvesting are very different. This paper therefore suggests
some interesting differences between the population models. We speculate that the
different responses may be related to the inflection point of the decreasing branch of
the population map. If it doesn’t exist like in concave models, we found increased
PTH to be stabilizing; if the location of the inflection point is below the unharvested
carrying capacity, we found increased PTH to be destabilizing. Note that both the
Hassell and the generalized Beverton–Holt map are two-parametric functions, but the
inflection point of the unstable Hassell map is always below the unharvested carrying
capacity, while the generalized Beverton–Holt model is more flexible and can show
both a stabilizing and destabilizing response to increases in PTH.

We have also observed a number of differences between harvesting strategies. In
particular, for TH (when q = 1) the destabilizing effect of increased harvesting pres-
sure (by lowering the threshold) is impossible for the Ricker map; the equilibrium of
the Ricker model under threshold harvesting has been shown to be always globally
asymptotically stable if T ≤ K .

Another major difference is that under TH the MSY can always be attained for the
Ricker map. By contrast, this is not the case for PTH. For a given harvest propor-
tion, the MSY cannot be attained if the population growth parameter is larger than a
critical value (see Fig. 9). This critical value increases with the harvest proportion.
In populations with a small growth parameter, the MSY can only be attained if the
harvest proportion q is small. In populations with a large growth parameter, however,
it requires a larger harvest proportion to be able to attain the MSY, so maximizing the
yield becomes more difficult for fast growing populations. For a given threshold, the
harvest proportion can always be chosen to obtain the MSY.

When populations oscillate in the absence of harvesting, they may overshoot the
carrying capacity. This allows for additional local maxima in the yield for thresholds
above the carrying capacity (see Fig. 10c). As a consequence, however, there will be
generations in which the population density drops below the threshold and harvesting
will not be allowed, thus reducing harvest frequency. In PTH, we observed another
interesting phenomenon. For threshold values below the carrying capacity, the popu-
lation can fluctuate but its densities remain above the threshold. Hence, there will be
oscillations with a high variability in yield, but the harvest frequency remains 1 (see
Fig. 10d).

We didn’t consider stochasticity, so harvest moratoria occur only when T > K and
dynamics are unstable. For moratoria to occur when T < K , we need to consider the
effect of stochasticity. Moreover, we didn’t consider age structure or any other form
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of structure. Results of Enberg (2005) suggest that considering age structure may be
important as the conclusions changed in comparison to Kaitala et al (2003), but since
both models relied on different assumptions and on simulations only, it is unclear
whether the differences are only due to age structure. This underlines the benefit of
rigorous results obtained from a mathematical analysis.

Acknowledgements Eduardo Liz acknowledges the support of the research Grant MTM2017–85054–C2–
1–P (AEI/FEDER, UE).

A Appendix

A.1 Existence and uniqueness of a positive equilibrium of (2.3)

We first prove a technical lemma.

Lemma 1 Let g : [a, b] → R be a twice differentiable map such that g′(x) > 0 and
g′′(x) < 0 for all x ∈ (a, b), and g(a) > a. Then g can have at most one fixed point
p in (a, b]. Moreover, the fixed point exists if and only if g(b) ≤ b.

Proof Assume that the set of fixed points of g is not empty, and denote by p1 the
infimum of this set. Since g(a) > a, it is clear that g′(p1) ≤ 1. By the hypotheses,
g′(x) < 1 for all x > p1. This excludes the possibility of more fixed points of g, and
implies that g(b) ≤ b. Bolzano’s Theorem ensures the existence of a fixed point of g
when g(a) > a and g(b) ≤ b. 
�
Proposition A.1 Assume that f satisifies (H) and T < K. Then Fq has a unique
positive fixed point K1 = K1(q, T ) ∈ (T , K ) for each q ∈ (0, 1).

Proof We first prove the uniqueness of the fixed point of Fq , dividing the proof into
two steps.

Step 1: Fq cannot have positive fixed points in (0, T ] ∪ [K ,∞).
For a fixed q ∈ (0, 1), Fq is a convex combination of f (x) and F1(x). Actually,

Fq(x) = (1 − q) f (x) + cF1(x), for all x ≥ 0. Hence,

f (x) ≤ x, ∀ x ≥ K
F1(x) < x, ∀ x ≥ K

}
�⇒ Fq(x) < x, ∀ x ≥ K ,

f (x) > x, ∀ x ≤ T
F1(x) ≥ x, ∀ x ≤ T

}
�⇒ Fq(x) > x, ∀ x ≤ T .

Step 2: Fq has a unique positive fixed point K1 ∈ (T , K ).

We notice that Fq(x) = (1−q) f (x)+qT for all x ∈ (T , K ), and therefore F ′
q(x)

and F ′′
q (x) have the same sign as f ′(x) and f ′′(x), respectively.

If d ≥ K , then F ′
q(x) > 0 and F ′′

q (x) < 0 for all x ∈ (T , K ). Since Fq(T ) > T
and Fq(K ) < K , Lemma 1 ensures that Fq has a unique fixed point K1 ∈ (T , K ).

In the following, we assume that d < K and consider two cases.

Case 1: Fq(d) < d.
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In this case, Fq cannot have fixed points in (d, K ). By Lemma 1, Fq(T ) > T and
Fq(d) < d imply that Fq has a unique fixed point K1 ∈ (T , d) ⊂ (T , K ).

Case 2: Fq(d) ≥ d.

In this case, Lemma 1 guarantees that Fq cannot have any fixed point in (T , d).
Since F ′

q(x) < 0 for all x ∈ (d, K ), Fq(d) ≥ d, and Fq(K ) < K , it follows from
Bolzano’s and Rolle’s theorems that there exists a unique K1 ∈ [d, K ) ⊂ (T , K ) such
that Fq(K1) = K1. 
�

A.2 Global stability for (2.3) when F′(K1) ≥ 0

If the map f satisfies (H) and F is nondecreasing at the positive equilibrium K1, then
K1 attracts all solutions of (2.3) starting at a positive initial condition. This result is a
direct consequence of Proposition A.1 and the following auxiliary result:

Lemma 2 (Braverman and Liz 2012, Lemma 1) Let g : [0,∞) → [0,∞) be a
continuous function such that g(0) = 0, and g has a unique fixed point p such that
x < g(x) ≤ p for all x ∈ (0, p), and 0 < g(x) < x for all x > p. Then p is globally
attracting for all positive solutions of the equation

xn+1 = g(xn), (A.1)

that is, every solution {xn} of (A.1) with x0 > 0 converges to p.

A.3 Local stability for (2.3) when f is concave in (0, K)

Proposition A.2 Assume that f satisifies (H), and f ′′(x) < 0 for all x ∈ (0, K ). If K is
asymptotically stable for (2.1), then the unique positive equilibrium K1 = K1(q, T )

of (2.3) is asymptotically stable for all q ∈ (0, 1) and T < K. Moreover, if K1 is
asymptotically stable for given values of q ∈ (0, 1) and T ∈ (0, K ), then decreasing
T cannot destabilize the equilibrium.

Proof Assume first that K is asymptotically stable for (2.1). Since f ′′(x) < 0 for all
x ∈ (T , K ), K1 < K , and | f ′(K )| ≤ 1, it follows that

|F ′
q(K1)| = (1 − q)| f ′(K1)| ≤ (1 − q)| f ′(K )| < 1.

This implies that K1 is asymptotically stable.
If K1(q, T1) is asymptotically stable for given values of q ∈ (0, 1) and T1 ∈ (0, K ),

then the same argument used above applies to prove that K1(q, T2) is asymptotically
stable if T2 < T1. We only need to use that T2 < T1 implies T < K1(q, T2) <

K1(q, T1) < K (see Franco and Liz 2013). 
�
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A.4 Global stability for (2.3) with a stable Ricker map

In this section we prove that if the positive equilibrium K = 1 of the Ricker map (3.2)
is globally asymptotically stable, then the same property holds for all q ∈ (0, 1] and
T > 0.

When T ≥ K , we prove a general result for maps f satisfying assumption (A). To
this end, we shall use the following auxiliary result:

Lemma 3 (El-Morshedy and Jiménez López 2008, Theorem B) Assume that f :
(0,∞) → (0,∞) has a globally attracting equilibrium p. Let g : (0,∞) → (0,∞)

be a continuous map satisfying that x < g(x) ≤ max{ f (x), p} for all x < p, and
x > g(x) ≥ min{ f (x), p} for all x > p. Then p is a globally attracting equilibrium
of g.

Proposition A.3 Assume that f satisifies (A). If T ≥ K and K is a global attractor of
(2.1), then K is a global attractor of (2.3) for all q ∈ (0, 1].
Proof If T ≥ K , then Lemma 3 applies to g = Fq because x < Fq(x) ≤ f (x) ≤
max{ f (x), K } for all x < K , and x > Fq(x) = f (x) ≥ min{ f (x), K } for all x > K
(see Fig. 2a). 
�

Next we address the case T < 1 for the Ricker map.

Proposition A.4 If r ≤ 2 and T < 1, then the unique positive equilibrium K1 =
K1(q, T ) of (2.3) with the Ricker map f (x) = x er(1−x) is globally asymptotically
stable.

Proof It is well known that the equilibrium K = 1 for the Ricker map f (x) =
x er(1−x) is a global attractor if and only if r ≤ 2 (e.g. Thieme 2003). Moreover, since
f ′′(x) < 0 for all x < 2/r , it follows that f ′′(x) < 0 for all x ∈ (0, 1) if r ≤ 2. Thus,
Propositions A.1 and A.2 ensure that (2.3) has a unique positive equilibrium K1, and
it is locally asymptotically stable if T < 1 and q ∈ (0, 1).

Nextweprove that K1 is actually a global attractor. To this end,weuse an enveloping
theorem due to Cull (2007, Theorem 3). We have to show that F(x) < 2K1 − x if
x < K1, and F(x) > 2K1 − x if x > K1.

Denote by p1, p2 the points such that f (p1) = f (p2) = T , 0 < p1 < T < K1 <

1 < p2. F is differentiable in (p1, p2). We distinguish three cases (see Fig. 11):

• If x ∈ (0, p1), then F(x) = f (x) ≤ T < 2T − x < 2K1 − x .
• If x ∈ (p2,∞), then we use that f (x) > 2 − x for all x > 1 (e.g. Cull 2007) to
show that F(x) = f (x) > 2 − x > 2K1 − x .

• If x ∈ (p1, p2) we have F ′(x) = (1− q) f ′(x) > −1, which makes it impossible
that there is a point q ∈ (p1, K1) ∪ (K1, p2) such that F(q) = 2K1 − q (assume
that such q exists, and apply Rolle’s Theorem to the map G(x) = 2K1− x − F(x)
and the points q and K1 to arrive at a contradiction).

Thus, F must remain below the line 2K1 − x for x < K1, and above it for x > K1,
and the proof is complete. 
�
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Fig. 11 A diagram showing how the modified map F(x) = min{ f (x), (1−q) f (x)+qT } (solid blue line)
is enveloped by the line 2K1 − x . The original Ricker map f (x) is shown in a red dashed line (color figure
online)

A.5 Stability switches for (2.3) with an unstable Ricker map

Here we rigorously prove the results about the Ricker model stated in Sect. 3.2.

Proposition A.5 Assume that r > 2, 0 ≤ T < 1, and q ∈ (0, 1).

(I) The positive equilibrium K1 of (2.3)with f (x) = x er(1−x) is asymptotically stable
if and only if the following inequality holds:

(1 − q)(rg(r , q, T ) − 1) ≤ er(g(r ,q,T )−1), (A.2)

where

g(r , q, T ) := 2 + rqT + √
(rqT )2 + 4

2r
(A.3)

is the larger root of the quadratic equation rx2 − (2 + rqT )x + qT = 0.
(II) Moreover, for each r > 2 fixed, the boundary of the stability region defined by the

implicit equation

(1 − q)(rg(r , q, T ) − 1) = er(g(r ,q,T )−1)

defines a decreasing curve q = q(T ) in the plane (T , q), 0 < T < 1.

Proof We first prove (I). Since the positive equilibrium K1 of (2.3) belongs to the
interval (T , 1), function F is defined as F(x) = (1−q) f (x)+qT in a neighborhood
of K1. This map is unimodal, of class C3, and has a negative Schwarzian derivative
everywhere. Thus, the condition for local asymptotic stability is F ′(K1) ≥ −1, which
is equivalent to (1 − q) f ′(K1) ≥ −1 (see Liz 2010). In order to get the stability
boundary, we solve the system of equations

x = (1 − q) f (x) + qT (A.4)
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−1 = (1 − q) f ′(x) (A.5)

Since f (x) = er(1−x), system (A.4)–(A.5) reads

(1 − q)er(1−x) = x − qT

x
(A.6)

(1 − q)er(1−x) = −1

1 − r x
(A.7)

This system leads to

x − qT

x
= −1

1 − r x
⇐⇒ r x2 − (2 + rqT )x + qT = 0.

This quadratic equation has two positive roots

x± = 2 + rqT ± √
(rqT )2 + 4

2r
.

Since 0 < q < 1, we get

2 −
√

(rqT )2 + 4 < 0 < 2rT (1 − q),

which implies that x− < T .
On the other hand, one can check that x+ = g(r , q, T ) ∈ (T , 1) for some q such

that

q <
r − 2

(r − 1)T
and q >

rT − 2

rT − 1
if rT > 2.

Replacing x = g(r , q, T ) in (A.7), we get the boundary of the stability region
defined in (A.2).

Next we prove (II). The stability boundary can bewritten as H(r , q, T ) = 0, where

H(r , q, T ) = er(g(r ,q,T )−1) − (1 − q)(rg(r , q, T ) − 1).

Weshow that, for a fixed value of r > 2, it holds that ∂H/∂T and ∂H/∂q are positive at
the equilibrium. Thus, the Implicit Function Theorem ensures that ∂q/∂T is negative,
which proves (II).

It is clear that ∂g/∂T > 0 and ∂g/∂q > 0, where g is defined in (A.3). On the
other hand, it is evident that rg(r , q, T ) > 1. Since

∂H

∂T
= r

∂g

∂T

(
er(g(r ,q,T )−1) − (1 − q)

)
,

∂H

∂q
= r

∂g

∂q

(
er(g(r ,q,T )−1) − (1 − q)

)
+ (rg(r , q, T ) − 1)
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it only remains to prove that er(g(r ,q,T )−1) > 1 − q.
Replacing x = g(r , q, T ) in (A.6), we get

(1 − q)g(r , q, T )er(1−g(r ,q,T )) = g(r , q, T ) − qT < g(r , q, T ),

from where it follows that (1 − q)er(1−g(r ,q,T )) < 1, as we wanted to prove. 
�
Corollary A.6 Assume that r > 2, 0 ≤ T < 1, and q ∈ (0, 1). Denote by K1 the
positive equilibrium of (2.3) with f (x) = x er(1−x).

(i) For T = 0, K1 is asymptotically stable if and only if q ≥ 1 − e2−r .
(ii) As T → 1−, the limit form of the asymptotic stability condition for K1 is given

by the inequality q > (r − 2)/(r − 1).
(iii) For a given value of T ∈ (0, 1), increasing q is stabilizing.
(iv) For a fixed value of q ∈ (0, 1), we have three cases:

(a) If q ≥ 1 − e2−r (r ≤ 2 − ln(1 − q)), then K1 is asymptotically stable,
independently of T .

(b) If (r − 2)/(r − 1) < q < 1 − e2−r , then increasing T is stabilizing.
(c) If q ≤ (r−2)/(r−1) (r ≥ (2−q)/(1−q)), then K1 is unstable, independently

of T .

Proof (i) For T = 0, we have g(r , q, T ) = g(r , q, 0) = 2/r , and therefore (A.2)
reads 1 − q ≤ e2−r .

(ii) For T = 1, the solution of (A.4) is x = 1, and therefore the limit form of the
asymptotic stability condition for K1 as T → 1− is given by−1 < (1−q) f ′(1) =
(1 − q)(1 − r), which is equivalent to q > (r − 2)/(r − 1).

(iii) and (iv) are a straightforward consequence of Proposition A.5 and the previous
items (i) and (ii).


�

A.6 Stability switches for (2.3) with a quadratic map

In this subsection we prove some analytic results for (2.3) with the quadratic map
f (x) = r x − (r − 1)x2. By Proposition A.2, r > 3 is a necessary condition for the
existence of a stability switch at the positive equilibrium K1.

Proposition A.7 Assume that r > 3, and q ∈ (0, 1). As T → 1−, the limit form of
the asymptotic stability condition for the equilibrium K1 is given by the inequality
q > (r − 3)/(r − 2).

Proof It is clear that the unique equilibrium of F(x) = (1 − q) f (x) + q is K1 = 1.
Thus, the limit form of the asymptotic stability condition is −1 < (1 − q) f ′(1) =
(1 − q)(2 − r), which is equivalent to q > (r − 3)/(r − 2). 
�

A consequence of Propositions A.2 and A.7 is that, for a given value of r > 3, a
necessary condition for the existence of a stability switch is q < (r − 3)/(r − 2).

Proposition A.8 Assume that r > 3, 0 ≤ T < 1, and q < (r − 3)/(r − 2).
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(I) The boundary of the stability region of the positive equilibrium K1 of (2.3) with
f (x) = r x − (r − 1)x2 is implicitly defined by the equation

((1 − q)r − 1)2 + 4q(1 − q)(r − 1)T = 4. (A.8)

Moreover, for each r > 3, (A.8) defines an increasing curve q = q(T ) in the
plane (T , q), 0 < T < 1.

(II) In the limit case T = 0, the stability switch is defined by q = (r − 3)/r .
(III) A stability switch as T is decreased occurs for all q such that

r − 3

r
< q <

r − 3

r − 2
.

Proof (I) The positive equilibrium K1 is the unique positive root of the quadratic
equation x = (1 − q) f (x) + qT , whose expression is

K1 = (1 − q)r − 1 + √
((1 − q)r − 1)2 + 4q(1 − q)(r − 1)T

2(1 − q)(r − 1)
.

Notice that q < (r − 3)/(r − 2) implies that q < (r − 1)/r , and therefore
(1 − q)r − 1 > 0. A stability switch occurs when (1 − q) f ′(K1) = −1, which
leads to (A.8).
To show that q = q(T ) is increasing, we use implicit differentiation with the map

H(q, T ) = ((1 − q)r − 1)2 + 4q(1 − q)(r − 1)T − 4.

It is clear that ∂H/∂T > 0 for all r > 1. On the other hand,

∂H/∂q = −2r((1 − q)r − 1) + 4T (r − 1)(1 − 2q) < 0

if q ≥ 1/2. If q < 1/2, since T < 1, we have

∂H/∂q < −2r((1 − q)r − 1) + 4(r − 1)(1 − 2q)

= −2((1 − q)r2 − (3 − 4q)r + 2(1 − 2q)),

and we can easily check that the last expression is negative for all r > 3.
Hence, ∂q/∂T = −(∂H/∂T )/(∂H/∂q) > 0.

(II) For T = 0, (A.8) gives (1− q)r − 1 = 2, which is equivalent to q = (r − 3)/r .
(III) is a consequence of (II) and Proposition A.7. 
�

A.7 Condition for theMSY in (2.3) with a Ricker map

Proposition A.9 System (4.1) with f (x) = x er(1−x) has a solution (x, T ) with x > 0,
T ∈ (0, K ), if and only if r < q − ln(1 − q).
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Proof For T = 0 and a fixed q ∈ (0, 1), we can find the unique solution (r∗, x∗) of
system (4.1). Indeed, system (4.1) with T = 0 becomes

f ′(x) = 1; (1 − q) f (x) = x . (A.9)

Using the expression of f in (A.9), we get

(1 − r x)er(1−x) = 1 = (1 − q)er(1−x),

which leads to r x = q. Replacing x = q/r into (1−q)er(1−x) = 1 gives (1−q)er−q =
1, which is equivalent to r = q − ln(1− q). Thus, the solution is r∗ = q − ln(1− q),
x∗ = q/r∗ = q/(q − ln(1 − q)).

Now, if T > 0, then system (4.1) leads to

(1 − r x)er(1−x) = 1; (1 − q)xer(1−x) + qT = x,

which, by elementary calculus, gives

r x = q
x − T

x − qT
:= q1 < q,

and therefore r = q1 − ln(1 − q1) < r∗, since the map v(q) = q − ln(1 − q) is
increasing for q ∈ (0, 1). 
�
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