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Abstract
Threshold harvesting removes the surplus of a population above a set threshold and takes no harvest below the threshold.
This harvesting strategy is known to prevent overexploitation while obtaining higher yields than other harvesting strategies.
However, the harvest taken can vary over time, including seasons of no harvest at all. While this is undesirable in fisheries or
other exploitation activities, it can be an attractive feature of management strategies where removal interventions are costly
and desirable only occasionally. In the presence of population fluctuations, the issue of variable harvests and population sizes
becomes even more notorious. Here, we investigate the impact of threshold harvesting on the dynamics of both population
size and harvests, especially in the presence of population cycles. We take into account semelparous and iteroparous
life cycles, Allee effects, observation uncertainty, and demographic as well as environmental stochasticity, using generic
mathematical models in discrete time. Our results show that threshold harvesting enhances multiple forms of population
stability, namely persistence, constancy, resilience, and dynamic stability. We discuss plausible choices of threshold values,
depending on whether the aim is resource exploitation, pest control, or the stabilization of fluctuations.

Keywords Fixed escapement · Harvest control rule · Pest control · Maximum sustainable yield · Intervention frequency ·
Population cycles · Stability

Introduction

The management of ecosystems often requires population
harvesting. Examples include the control of invasive species,
removal of weeds, roguing of infected plants, regulation
of pests such as defoliating insects, and the harvesting of
fisheries and forestry. The strategy of threshold harvesting
removes the entire excess of a population stock above a
certain threshold value and takes no harvest if the stock
is below the threshold. In many instances, this strategy
emerges naturally, e.g., when pests exceed economic injury
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levels, detection thresholds, or values that can be used to
justify spending a budget.1

The threshold is sometimes also called the escapement
(or biomass reference point in the fisheries literature),
because it corresponds to the population level that “escapes”
harvesting. As a harvesting strategy that keeps the pop-
ulation at a constant ceiling, threshold harvesting can be
seen as the antipode to the constant-quota harvesting strat-
egy, which removes a constant quota from the population.
Proportional harvesting, which removes a constant fraction
of the population, corresponds to an intermediate strat-
egy between the two extremes of threshold harvesting and
constant-quota harvesting. Figure 1 illustrates the three har-
vesting strategies by showing their relative harvest mortality

1Equivalent effects on a population can be caused by mechanisms
other than harvesting. The earliest examples we are aware of are given
by Ricker (1952) (and reiterated in his famous paper Ricker 1954,
Fig. 34 and pp. 609–616). He describes the situation when a population
is regulated by generalist predators in such a way that only individuals
in refuges of a given size escape predation or that predators switch their
search image abruptly at a certain prey threshold density. He refers to
two empirical examples, one being predation upon bob-white in Iowa
and the other one being predation upon Atlantic salmon parr in some
rivers.
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Fig. 1 Relative harvest mortalities for threshold harvesting (blue,
dotted), proportional harvesting (black, dashed), and constant-quota
harvesting (red, solid). We denote by x the population size at
equilibrium, Y (x) the corresponding yield, T the threshold, c the
constant quota, and q the proportional rate of harvest

(or per-capita harvest rate) as a function of population
abundance. For threshold harvesting, the relative population
removal ceases as the population becomes smaller and stops
altogether when the population drops below the thresh-
old. By contrast, for constant-quota harvesting, the relative
population removal increases as the population becomes
smaller. For proportional harvesting, the relative population
removal is constant.

Threshold harvesting is known under many different
names in quite different disciplines (see Table 1). Here, we
use the term “threshold harvesting” because it seems the
most inclusive one for the wide range of applications that
we have in mind, stretching from pest control to resource
exploitation. To avoid confusion, we point out that the
term “threshold harvesting” is sometimes also used for
other harvesting strategies, where there are different forms
of removal above the threshold (e.g., Kaitala et al. 2003;
Enberg 2005).

According to a review of harvesting strategies, threshold
harvesting generally performs best for maximizing cumu-
lative yield, mean annual yield, and profit in the absence
of observation error (Deroba and Bence 2008). This has
been found to hold under a wide range of assumptions (e.g.,
Ricker 1958; Clark 1976; Reed 1978, 1979, 1980; Ludwig
1979, 1980, 1998; Mendelssohn 1979; Mangel 1985; Lande
et al. 1995, 1997). As harvesting is curtailed when the pop-
ulation is below the threshold level, threshold harvesting
has a built-in mechanism to accommodate random varia-
tion in environmental conditions or vital rates (Lande et al.
1997). This has two major consequences. On the one hand,
this makes threshold harvesting a precautionary strategy that
prevents overexploitation and maintains spawning biomass.
On the other hand, threshold harvesting may impose a “stop-
and-go fishery” (Evans 1981), which implies an economic
and political cost to more precautionary harvesting. Ricker
(1958) was perhaps the first to observe that the variability
of catch is greater for threshold harvesting than for some
other strategies (see also Larkin and Ricker 1964; Tautz
et al. 1969; Allen 1973; Gatto and Rinaldi 1976). Another
drawback of threshold harvesting is that it requires up-to-
date knowledge of stock size (Hilborn and Walters 1992).

Table 1 A collection of the
many names of threshold
harvesting

Name References

Ecology, fisheries, natural resources management

Threshold harvesting Lande et al. (1995) and Lande et al. (1997)

Fixed escapement Hilborn (1979) and Fryxell et al. (2005)

Constant escapement Reed (1979) and Getz and Haight (1989)

Fixed stock Jonzén et al. (2002)

Constant-stock-size strategy Hilborn and Walters (1992)

Optimal strategy Ludwig (1998)

Bang–bang Clark (1976)

Optimum stabilization of escapement Ricker (1958)

Trigger harvest Sabo (2005)

(upper) limiter control Hilker and Westerhoff (2006) and Tung et al. (2014)

Physics, telecommunication, nonlinear dynamics

Thresholding Sinha (1994) and Sinha (2001)

Flat-topped maps Glass and Zeng (1994)

Simple limiter control Corron et al. (2000) and Stoop and Wagner (2003)
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Errors in stock size estimates may (Engen et al. 1997;
Milner-Gulland et al. 2001; Lillegård et al. 2005) or may
not (Butterworth and Bergh 1993; Polacheck et al. 1999)
change the relative superiority of threshold harvesting com-
pared to other strategies. In practice, thresholds are typically
set too low (Ludwig et al. 1993). Yet, it remains that thresh-
old harvesting is a strategy minimizing extinction risk while
optimizing yield (Lande et al. 1995; Lande et al. 1997)
and could thus bring together conservation and exploitation
interests.

Recent microcosm experiments have investigated thresh-
old harvesting of populations of the ciliate Tetrahy-
mena thermophila (Fryxell et al. 2005) and the fruit fly
Drosophila melanogaster (Tung et al. 2016), for selected
threshold values. Both studies support the utility of thresh-
old harvesting as a management strategy. In both experi-
ments, threshold harvesting was found to reduce variability
in population density and to reduce extinction risk.

Depending on the context, harvesting may be desirable
because it generates revenue (e.g., in fisheries) or unde-
sirable because it causes expenditures (e.g., in pest con-
trol). In this paper, we focus on three areas of application,
namely exploitation, pest control, and the dynamic stabi-
lization of fluctuating populations. Populations with fluctu-
ations present unique challenges to managers (Barraquand
et al. 2017); for instance, the harvest can vary dramatically
between years and sometimes stop completely. While the
latter is desirable for pest control, it can be hazardous for
fishing industries. We will consider population fluctuations
that are endogenously generated (due to overcompensation,
time lags, or nonlinear population interactions), including
the case where there are additionally exogenous fluctua-
tions (due to random variations in the biology and in the
physical environment). This differs from previous work
by Lande and colleagues (reviewed in Lande et al. 1997),
which considers stochastic fluctuations in dynamically sta-
ble populations and assumes the absence of endogenously
generated oscillations.

Harvesting is perceived as magnifying exogenous and reduc-
ing endogenous fluctuations (Milner-Gulland and Mace
1998). For a more informed basis, we consider different
forms of stability, namely persistence stability (persisting
through time as opposed to going extinct); constancy sta-
bility (population size remaining essentially unchanged);
dynamic stability (eventually returning to the equilibrium
after perturbations); and resilience (the ability to absorb
perturbations that are within the domain of attraction)
(Grimm and Wissel 1997). In the next Section, we inves-
tigate the effect of threshold harvesting on these forms of
stability for semelparous and iteroparous species. “Models
with Allee effect” considers populations with demographic
Allee effect. “Average long-term yield” focuses on the
average long-term yield. “Stochastic simulations” takes into

account stochasticity in the form of demographic and auto-
correlated environmental variations as well as observation
error, and investigates the harvest frequency and the vari-
ability of yield as a function of harvesting intensity. When
we say increased threshold harvesting we mean setting a
lower threshold (escapement) which amounts to elevated
harvesting intensity. In each of these sections, we not only
present results, but also place the models in the context
of the literature and discuss the relevance of our findings.
“Conclusions” provides a summary of the results and draws
overall conclusions.

Population dynamic effects of threshold
harvesting

In this Section, we study single-species populations without
Allee effect managed by threshold harvesting. Let xn be
the population size at time step n, n = 0, 1, 2, . . ..
The population dynamics in the absence of harvesting is
assumed to follow

xn+1 = f (xn) (2.1)

for an initial value x0 > 0. The map f gives the
discrete-time reproduction. In this Section, we assume a
typical condition for f , which is satisfied by semel- and
iteroparous population models without Allee effect, such as
the Beverton–Holt, Ricker, Hassell or Ricker–Clark maps:

(A) f : [0, ∞) → [0, ∞) is continuous, has a unique
positive fixed point K , f (x) > x for x ∈ (0, K), and
0 < f (x) < x for x > K .

If the population is managed by threshold harvesting,
then the dynamics is governed by the difference equation

xn+1 = min{f (xn), T } := g(xn) =
{

f (xn) if f (xn) ≤ T ,

T if f (xn) > T ,

(2.2)

where T > 0 is the threshold. The smaller the value of T ,
the larger the harvesting intervention. The graph of Eq. (2.2)
is a truncated map as illustrated in Fig. 2a, c.

Next, we will state a few properties regarding the dynamic
stability of a managed population, depending on whether the
population is stable or unstable in the absence of harvesting.

Dynamic stability

Here, we will show that threshold harvesting can never
have a destabilizing effect on the managed population.
By destabilizing, we mean that an equilibrium that is
locally asymptotically stable in the absence of harvesting
becomes unstable due to harvesting. Instead, we will show
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Fig. 2 Examples of threshold
harvesting with T = 50 (top
row) and T = 80 (bottom row).
In both cases, the unmanaged
population cycles with period 4,
following a Ricker map with
r = 2.6 and K = 60. Diagrams
in the left column show the
unmanaged Ricker map (hump-
shaped) and the harvested
population maps (flat-topped).
Threshold harvesting begins
after ten time steps. For the low
threshold (top row), harvesting
stabilizes the population on a
stable equilibrium (b), shown as
red point in (a). For the large
threshold (bottom row),
harvesting changes the period of
the population cycle from 4 to 2
(d), shown in thin dotted line in
(c)
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that strong enough harvesting, i.e., a small escapement,
stabilizes population dynamics.

In fact, if the threshold is set below the carrying capacity
(T < K), the system has a stable equilibrium. See Fig. 2a, b
for an example. That is, for threshold values T < K , the
map g has a unique positive equilibrium K = T , and all
solutions of Eq. (2.2) starting at an initial condition x0 > 0
converge to K . If this property holds, we say that K is
a global attractor. We state this property in the following
proposition, whose proof can be found in Appendix A.1:

Proposition 2.1 Assume that f satisfies (A). If T ≤ K ,
then T is the unique positive equilibrium of Eq. (2.2), and
it is a global attractor.

In the remainder of this section, we consider the scenario
that the threshold is set at a value greater than the carrying
capacity (T > K). Then, the dynamics of the managed
system (2.2) depends on the dynamics of the unmanaged
system (2.1). We distinguish three cases, namely where the
unmanaged population (i) has a stable equilibrium, (ii) is
periodic, or (iii) chaotic.

First, consider the dynamically simplest case. So we
assume that the positive equilibrium K is a global attractor
of Eq. 2.1. The following result states that this equilibrium
cannot be destabilized by threshold harvesting:

Proposition 2.2 Assume that f satisfies (A), and K is a
global attractor of Eq. (2.1). If T ≥ K , then K is the unique
positive equilibrium of Eq. (2.2), and it is a global attractor.

This result is a particular case of a more general result
proved in Hilker and Liz (2019, Proposition A.3).

Second, consider that the equilibrium K of Eq. (2.1) is
unstable and that Eq. (2.1) has a finite number of periodic
orbits. We will show that increased harvesting pressure,
i.e., decreasing the threshold, induces a sequence of
period-halving bifurcations until the equilibrium becomes
stable. It is possible to determine the threshold value for
desired periods, which includes the threshold necessary
for stabilization. Figure 2c and d show an example where
threshold harvesting changes a 4-cycle into a 2-cycle.

An application of Sharkovsky’s theorem on the coexis-
tence of cycles (see Sharkovsky et al. 1997) ensures that
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all the periods are powers of two. For the unimodal repro-
duction maps usually employed in population dynamics, if
p = 2N is the largest period of a periodic orbit of f , then
this p-periodic orbit is unique, and it attracts all initial con-
ditions except those belonging to the other periodic orbits
and their preimage. Denote the attracting periodic orbit by
O = {x1, x2, . . . , xp}, where x1 < · · · < xp. As long as
T ≥ xp, it is clear that O attracts almost all initial condi-
tions of Eq. (2.2). As T is decreased below xp, a sequence
of period-halving bifurcations occurs, in such a way that,
for each T ∈ (K, xp), system (2.2) has a periodic attractor
whose period is q = 2m, with 1 ≤ m ≤ N . This attractor
has the form

�q = {T , f (T ), . . . , f q−1(T )}, (2.3)

where f k denotes, as usual, k iterations of f for any integer
k ≥ 1, that is,

f k(x) = (f ◦ · · · ◦ f )︸ ︷︷ ︸
k

(x).

The period q in Eq. 2.3 is determined as the least integer
such that f q(T ) ≥ T . For example, under assumption
(A), the condition T > K is equivalent to f (T ) > T . If
f (T ) < T ≤ f 2(T ), then all positive solutions converge to
the 2-periodic orbit {T , f (T )}, with the only exception of K

and its preimage (see Fig. 2c).
Figure 3 shows a bifurcation diagram and illustrates

the bifurcation conditions for the period-halvings from 4-
cycles over 2-cycles to stable fixed points when increasing
threshold harvesting, i.e., reducing the value of T as
the bifurcation parameter. We provide more details in
Appendix A.2.

Third and last, consider that the dynamics of the
unmanaged map (2.1) is chaotic. As in the previous case, for
SU-maps (see Appendix A.2), there is a unique attracting
periodic orbit of the managed system (2.2), which has the
form of Eq. (2.3). With probability one, all other orbits
fall into this stable periodic attractor (see Thunberg 2001,
Corollary 5 and Theorem 6). The period q is again deter-
mined as the least positive integer for which f q(T ) ≥ T .
Since the map g defined in Eq. (2.1) is continuous, there is
Li–Yorke chaos as long as the period of the attracting cycle
is not a power of two. However, since there is a periodic
attractor, the chaotic repellor is not observable; in particular,
the map g does not have sensitive dependence (Thunberg
2001, p. 15). Once the chaotic dynamics becomes simpler
due to threshold harvesting (with periodic attractors having
a period q = 2m), we have the situation considered in the
previous case. Earlier results in this direction have been
reported by Sinha (1994) who studied some properties of
thresholding for the chaotic quadratic map f (x) = 1 −
2x2. The bifurcation diagram of Eq. (2.2), using T as the
bifurcation parameter, exhibits some characteristic features,

Fig. 3 Bifurcation diagram of the threshold harvesting strategy (2.2),
shown in solid blue curve, for the Ricker map f (x) = xer(1−x/K) with
r = 2.6 and K = 60. For convenience, we also show the graphs of f

(dashed, red) and f 2 (dotted, black). The bifurcation parameter is the
threshold value T , ranging between 0 and 140 (a little bit beyond the
maximum of f ). The uncontrolled map f has an attracting cycle of
period 4 = 22, namely, {p1, p2, p3, p4}. For T ≥ p4, this cycle is
also attracting for Eq. 2.2. As long as T < p4 and f 2(T ) < T , the
attracting cycle is {T , f (T ), f 2(T ), f 3(T )}. The first period-halving
bifurcation occurs at T = T1 ≈ 105, determined by the unique point
in (p3, p4) such that f 2(T1) = T1. Another period-halving bifurcation
occurs at T = K = 60, the positive fixed point of f . For T ≤ K , the
threshold T is globally attracting (Proposition 2.1)

which include periodic windows and ranges of effectively
chaotic behavior; this means that even if there is a periodic
attractor, its period can be very large. Further properties
of bifurcation diagrams for threshold harvesting when the
map f is chaotic can be found in Glass and Zeng (1994),
Stoop and Wagner (2003), Zhou and Yu (2005), and Zhou
(2006). See also Hilker and Westerhoff (2005, 2006) and
Hilker and Liz (2013).

Bimodal maps with iteroparity

A consequence of the dynamic behavior described in
“Dynamic stability” is that, for a population stabilized on
a periodic cycle, inherent fluctuations cannot be enhanced
by threshold harvesting. This is a key difference to other har-
vesting strategies. For instance, constant-quota harvesting
of a population modeled by a Ricker map with a 4-periodic
attractor can induce potentially undesirable effects such as
increased complexity (e.g., towards chaos), essential extinc-
tion, and sudden collapses (Sinha and Parthasarathy 1996;
Schreiber 2001). Here, we illustrate that threshold har-
vesting cannot be destabilizing by focusing on iteroparous
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(or perennial) species that can have multiple reproductive
cycles over their lifetime. Iteroparous species are described
by bimodal maps, for which both constant-quota and pro-
portional harvesting can be destabilizing (see below).

Although proportional harvesting tends to simplify the
dynamics for a unimodal Ricker-type model, it has been
recently shown that this is not always the case for the
Ricker–Clark model (Clark 1976; Thieme 2003; Liz 2010)

f (x) = αx + (1 − α)x er(1−x/K), (2.4)

where the survival parameter α describes survivorship of
adults from one season to the next. Equation 2.4 has been
recently employed by Shelton and Mangel (2011) to study
how fishing can magnify fluctuations in fish populations,
and by Yakubu et al. (2011) to asses the performance of
proportional harvesting. Even if the survival rate is very
small, a 2-periodic attractor of Eq. (2.4) can be transformed
into a chaotic attractor by proportional harvesting (see Liz
and Ruiz-Herrera 2012, Fig. 8). For larger values of α,
a globally attracting equilibrium can be destabilized by
harvesting. For proportional harvesting, this phenomenon
has been noticed by Yakubu et al. (2011) and analyzed in
detail by Liz and Ruiz-Herrera (2012); for constant-quota
harvesting, this effect has been shown in Liz (2010). In view
of Propositions 2.1 and 2.2, threshold harvesting cannot
destabilize a global attractor. For comparison, we consider
Eq. 2.4 with K = 60, r = 4, and α = 0.56. In this
case, the equilibrium K is a global attractor. A strategy
of proportional harvesting destabilizes the equilibrium by
a period-doubling bifurcation (Fig. 4a). Constant-quota
harvesting not only destabilizes the equilibrium, but also
induces a strong Allee effect capable of producing essential
extinction or a sudden collapse if the catch quota is large
enough (Fig. 4b). Finally, in accordance with our analytical

results, threshold harvesting does not destabilize the positive
equilibrium (Fig. 4c). The corresponding models are

xn+1 = (1 − γ /M)f (xn) (proportional harvesting),

xn+1 = max{f (xn) − d, 0} (constant-quota harvesting),

xn+1 = min{f (xn), T } (threshold harvesting),

where M ≈ 141 is the maximum of f .

Constancy and persistence stability

One measure of constancy stability is the fluctuation range,
and one measure of persistence stability is the inverse of
the minimum population size (as extinction risk is larger the
smaller the population size). On the basis of these measures,
we find that increased threshold harvesting can enhance,
but that it never deteriorates constancy stability. Moreover,
we find that increased threshold harvesting deteriorates
persistence stability for T < K and, somewhat counter-
intuitively, enhances persistence stability for T > K .

As we have mentioned, typical unimodal population
maps (e.g., Ricker, Hassell, Maynard–Smith, quadratic)
have a unique positive equilibrium K and are decreasing
for x > K . In this case, if the equilibrium is unstable, a
common feature of the bifurcation diagrams in the presence
of threshold harvesting (2.2) is that, once the harvesting
is implemented, the enveloping curves of the diagram are
defined by the line x = T and the curve x = f (T ) until the
equation has a stable fixed point at T = K (for example,
see Fig. 3). The reason is that, since the periodic attractor �

has the form (2.3), it is clear that the maximum value of �

is T and the minimum is f (T ). This has two immediate
implications. First, the extent of the periodic attractor (i.e.,
the range of fluctuations) is an increasing function of T

(T > K implies that f ′(T ) < 0 and hence T − f (T ) is
increasing); in other words, constancy stability increases as

a b c

Fig. 4 Bifurcation diagrams for the bimodal Ricker–Clark map (2.4)
managed by three different harvesting strategies. a For proportional
harvesting, a bubble is created (cf. Liz and Ruiz-Herrera 2012). b For
constant-quota harvesting, the equilibrium is destabilized too; note
that an additional unstable equilibrium appears due to the induced

strong Allee effect, and that there are boundary crises (Schreiber
2001). c Threshold harvesting does not destabilize the equilibrium.
Red dashed lines indicate unstable equilibria. Initial conditions drawn
from a pseudo-random uniform distribution. Parameter values: K =
60, r = 4, α = 0.56. M ≈ 141 is the maximum value of f
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the intensity of threshold harvesting increases. This property
is no longer true for bimodal maps if the cycle has a
period larger than two. Second, the minimum population
size of the periodic attractor, i.e. f (T ), increases with lower
values of T as long as T > K . As stochastic extinction is
more likely for small population sizes, increased threshold
harvesting enhances persistence stability for T > K . If
T ≤ K and the population is dynamically stabilized to
equilibrium, this is no longer the case.

Models with Allee effect

In this section, we investigate the effect of threshold harvest-
ing on population dynamics with a strong Allee effect (also
called critical depensation in the fisheries literature) in the
absence of harvesting. So far, Allee effects are acknowl-
edged to increase extinction risk and to reduce yield as well
as yield predictability under threshold harvesting (Ricker
1958; Collie and Spencer 1993; Eggers 1993; Lande et al.
1995; Walters and Parma 1996; Ludwig 1998). Here, we
will show that threshold harvesting is a remarkably resilient
and adaptive strategy in comparison to constant-quota and
proportional harvesting and that it can prevent essential
extinction, in which almost all initial conditions would lead
to extinction in the absence of harvesting.

We consider the Ricker-Schreiber model

xn+1 = sxn

1 + sxn

xn er(1−xn/K) := f (xn), n = 0, 1, 2, . . . , (3.1)

where parameter s > 0 represents an individual’s efficiency
to find a mate (Schreiber 2003, Sect. 2.1). This model
has two positive equilibria K1 < K2, where K2 is the
carrying capacity and K1 is the so-called Allee threshold.
There are three generic possibilities for the dynamics of
model (3.1): extinction, bistability between extinction and
survival, and essential extinction (Schreiber 2001). The
latter means that extinction occurs for a randomly chosen
initial condition with probability one and results from

a combination of overcompensatory instability and the
strong Allee effect. Thus, it is natural that any harvesting
method can prevent essential extinction when it reduces
the undesirable effects of overcompensation. The transition
from essential extinction to the existence of a nontrivial
attractor takes place via a boundary collision. Some
examples for constant-quota harvesting and proportional
harvesting can be found in Sinha and Parthasarathy (1996),
Schreiber (2001), Liz (2010), and Cid et al. (2014).

Threshold harvesting prevents essential extinction, too.
Moreover, the escapement level necessary to avoid essential
extinction is very easy to compute: just take the value of
T > K2 such that f (T ) = K1, that is, the preimage
of K1 by the map f . If the escapement is set too low,
then the species is doomed to extinction through a sudden
collapse induced by the Allee effect; however, compared
with constant-quota or proportional harvesting, this effect
is less dramatic for threshold harvesting since this is only
possible if the escapement is below the Allee threshold K1.
We provide some examples to illustrate these remarks.

First, consider Eq. (3.1) with K = 60 and r = 5.
Figure 5a shows the stability diagram for T ∈ (0, 200) and
s ∈ (0.01, 0.04). The border between essential extinction
and bistability is defined by the implicit curve f (T ) = K1

(T > K2); the equilibrium K2 is attracting when K1 <

T ≤ K2; and there is extinction for T ≤ K1. These generic
dynamics can be observed in Fig. 5b for the particular value
s = 0.025 (corresponding to the dashed line in Fig. 5a).
Essential extinction can be prevented if T < T1 = 131.72,
and there is a nontrivial attractor if T2 < T < T1, where
T2 = K1 ≈ 0.27 is the Allee threshold.

Next, we consider Eq. (3.1) with K = 1, r = 4,
and s = 0.6, which has a 2-periodic attractor coexisting
with the trivial attractor. We have normalized the carrying
capacity to 1 in order to make the figures clearer. In
Fig. 6, we observe the effects of harvesting for constant-
quota, proportional, and threshold harvesting. We focus on
sudden collapses due to the interaction between harvesting

Fig. 5 a Stability diagram of the
Allee effect model (3.1)
managed by threshold
harvesting in the parameter
plane (T , s) with K = 60 and
r = 5. b Bifurcation diagram for
fixed s = 0.025 (corresponding
to the horizontal dashed line
in a). Initial conditions drawn
from a pseudo-random uniform
distribution

a b
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Fig. 6 Bifurcation diagrams
(top row) and asymptotic yield
(bottom row) for different
harvesting strategies and the
Ricker–Schreiber model (3.1)
with K = 1, r = 4, s = 0.6. For
threshold harvesting,
intervention starts at T ≈ 0.844,
the maximum value of f . In the
top row, initial conditions are
drawn from a pseudo-random
uniform distribution. The bottom
row is for an initial condition
not leading to extinction

and Allee effects. Before a collapse occurs, there is an
attracting equilibrium at which the population stabilizes
its size for intermediate initial population values; higher
values of this equilibrium make the collapse more dramatic,
since the manager does not have early signals indicating the
impending collapse. In our example, we can compute the
population size at the bifurcation point leading to extinction.

1. For constant-quota harvesting, a collapse occurs if we
harvest at a constant quota of d = 0.4678. The
equilibrium at the bifurcation point is K2(d) ≈ 0.35,
which corresponds to 50% of the carrying capacity in
the absence of harvesting (K2 ≈ 0.69).

2. For proportional harvesting, a collapse occurs if we
harvest at a rate of γ = 62% of the population, and the
equilibrium at the bifurcation point is K2(γ ) ≈ 0.22,
which corresponds to 31.8% of the carrying capacity in
the absence of harvesting.

3. Finally, for threshold harvesting, a collapse occurs for
T = K1 ≈ 0.036, which is also the population
size of the nontrivial attractor at the bifurcation point
and corresponds to 5% of the carrying capacity in the
absence of harvesting.

The Allee threshold corresponds to a tipping point of pop-
ulation sizes above which populations survive and below
which populations go extinct. For constant-quota and pro-
portional harvesting, the Allee threshold sharply increases
with increasing harvesting intensity, especially near the
bifurcation points (red dashed curves in Fig. 6). That is, the

basin of attraction of the extinction state markedly expands
due to these harvesting strategies. By contrast, the Allee
threshold remains constant for increased threshold harvest-
ing. As a consequence, under threshold harvesting, the
population is more resilient against perturbations than that
under the other harvesting strategies.

The asymptotic values of the average sustained yield is
shown in Fig. 6. For constant-quota and proportional harvest-
ing, the average yield collapses at or respectively shortly
after the harvesting intensity producing maximum sustain-
able yield. For threshold harvesting, there is no abrupt
collapse of the yield; it changes gradually even beyond
the maximum sustainable yield and despite a strong Allee
effect. This is a desirable feature for the adaptive man-
agement of developing fisheries (see Hilborn and Walters
1992). In the next section, we will investigate the shape of
the yield curve for threshold harvesting in more detail.

Average long-term yield

An important feature of threshold harvesting (2.2) is that
in many cases there is a periodic attractor which attracts
all positive orbits with probability one. Moreover, the orbits
become periodic after few transients. Thus, after these
transients have died out, intervention takes place only once
every p years, where p is the period of the attracting cycle.
This property provides a simple method to calculate the
frequency of harvest and the average long-term yield.
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In this Section, we consider again threshold harvest-
ing (2.2) of a population with the generic condition (A), i.e.,
without Allee effect. Assume that

�p = {T , f (T ), . . . , f p−1(T )}
is the attracting cycle. Notice that f i(T ) < T holds for
all i = 1, 2, . . . , p − 1. Then, harvesting occurs only once
every p time steps, and what we remove from the population
(harvest, yield) is

f p(T ) − T .

For example, if T ≤ K , then p = 1 such that there
is an intervention every time step, and the average yield is
f (T ) − T .

If f is differentiable, then it is easy to compute the
threshold values that give the maximum long-term yield.
Indeed, for a p-periodic window, we have to calculate the
maximum of gp(x) = f p(x) − x, which is reached at
the point T such that g′

p(T ) = 0, which is equivalent to
μ = 1, where μ = f ′(q1)f

′(q2) · · · f ′(qp) is the multiplier
associated to the cycle {q1, q2, . . . , qp}. For example, let us
consider the Ricker map with r = 2.6 and K = 60 (Fig. 7).
In the range T ∈ (0, 60), T is an attractor and the maximum
harvest is attained at T1 ≈ 19.2, with a yield value h1 ≈
93.3. The 2-periodic window is T ∈ (60, 105.1), and the
maximum yield within this threshold range is attained at
T2 ≈ 84, with a value of h2 ≈ 26.4. However, since in
this case harvesting occurs only once every two periods, the
maximum average yield is h2/2 ≈ 13.2.

That is, for threshold values T ≤ K , the average long-
term yield shows a dome-shaped form, which has been
reported before for different types of population models
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Fig. 7 Bifurcation diagram with the long-term harvest (thin red),
average long-term yield (bold red), and mean population size (solid
black). Threshold harvesting strategy (2.2) with the same Ricker map
as in Fig. 3

(e.g., Hall et al. 1988; Lande et al. 1995). Here, we find the
existence of additional dome-shaped relationships between
average long-term yield and threshold in parameter ranges
T > K when the population dynamics is unstable in the
absence of harvesting. To our knowledge, these additional
local maxima in sustained yield have not been reported
before for threshold harvesting (but see Hilker and Liz 2019
for the strategy of proportional threshold harvesting).

Figure 7 also shows the mean population size. We briefly
report that there is a hydra effect (Abrams 2009; Hilker and
Liz 2013) for T ∈ (60, 81.4), approximately. That is, the
mean population size increases when harvesting mortality is
enhanced within this parameter range.

Stochastic simulations

There is intrinsic uncertainty in population dynamics, assess-
ment, and harvesting. This uncertainty is known to be prob-
lematic for harvesting and sustainable resource use (Hine
and Gifford 1996; Roughgarden and Smith 1996; Gustafs-
son et al. 1999; Adamson and Hilker 2020). In this section,
we consider three sources of random variation, namely demo-
graphic and environmental stochasticity (chance events and
variation of external conditions) as well as observation error
(generated by the measurement process).

Model description

Environmental stochasticity enters each generation in the
form of a first-order autoregressive model:

εn+1 =
{

ρεn + σenv δn+1 for n > 0
δn+1 for n = 0

(5.1)

where

δn ∼ Normal

(
−σ 2

env

2
× 1 − ρ√

1 − ρ2
, σ 2

env

)
(5.2)

is an uncorrelated, normally distributed process error with a
mean that corrects the bias from the autocorrelation in the
environmental variation (Thorson et al. 2014). Parameter
σenv > 0 determines the magnitude of environmental
variation. ρ ∈ (0, 1) is the strength of the autocorrelation. If
ρ = 0, there is no autocorrelation and the noise is white. If ρ

is strictly positive (negative), the noise spectrum is reddened
(blue-shifted). Here, we assume temporally autocorrelated
environmental variations, as this has been considered
important in ecosystems (Steele 1985) and for the choice
of management strategies (Hall et al. 1988; Koslow 1989;
Walters and Parma 1996; Kaitala et al. 2003). The individual
reproduction is drawn from a Poisson distribution with a

527Theor Ecol (2020) 13:519–536



mean given by the reproduction curve f (xn), modulated
by the log-normally distributed environmental noise. The
population dynamics before harvesting is then described by

x̃n = Poisson
(
f (xn)e

εn
)
, (5.3)

which gives integer values as population abundance.
The population size in the next generation

xn+1 = x̃n − Hn (5.4)

is the one after harvesting, where the harvest in the current
generation is given by

Hn =
{

x̃obs,n − T if x̃obs,n > T

0 else
(5.5)

and based on the observed population size

x̃obs,n = x̃n exp

(
σobs ωn − σ 2

obs

2

)
, (5.6)

where ωn is drawn from a standard normal distribution. That
is, the harvest is stochastic as it includes observation uncer-
tainty (also called partial observability), which is assumed
to be log-normally distributed (Hilborn and Mangel 1997).

We do not explicitly incorporate implementation error (also
called partial controllability) but note that the stochastic
harvest may be considered to subsume both observation
and implementation error (cf. Jonzén et al. 2002). For pro-
portional harvesting, Hn = γ x̃obs,n. For constant-quota
harvesting, Hn = d is assumed to be independent of
population size estimates.

Environmental stochasticity

In the following Monte–Carlo simulations, we keep the
autocorrelation in the environmental variation at a fixed
value of ρ = 0.43, which is the mean from a meta-
analysis of 154 fish stocks (Thorson et al. 2014). For the
moment, we ignore observation error but will investigate
its impact separately later on. We have varied the strength
of environmental stochasticity. Figure 8 shows results for
three cases. The intermediate one is σenv = 0.74, which
corresponds to the mean from the fish stock meta-analysis
(Thorson et al. 2014). As fish populations tend to show
substantial environmental variation in their recruitment, we
also consider σenv = 0.4 as a lower value (which may still

Fig. 8 Comparison of threshold
harvesting (left column) and
proportional harvesting (right
column) for different levels of
environmental stochasticity (first
row σenv = 0.4, second row
σenv = 0.74, third row σenv = 1).
Shown are the coefficient of
variation of the harvest, the
mean harvest scaled by the
carrying capacity, the extinction
risk, and the harvest frequency.
Model Eqs. (5.1)–(5.6) with the
Ricker map for r = 2.6,
K = 60, ρ = 0.43 including
demographic stochasticity but
no observation error (σobs = 0).
Results are based on 10,000
replicates and 100 iterations for
each harvesting intensity, with
the initial 50 iterations discarded
to remove transient effects.
Random initial conditions
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be considered high for other taxa or certain species) and
σenv = 0.9 as a higher value.

We would like to highlight the following observations in
Fig. 8. First, consider extinction risk, which we define as the
proportion of simulation replicates leading to extinction
(xt < 1) over the time horizon of 100 generations. Increased
threshold harvesting, i.e., a lower escapement, decreases the
extinction risk (solid red curves in Fig. 8a, c, e). This is
because threshold harvesting curtails large population sizes
that could trigger an overcompensatory population response
and generate vulnerably small population sizes in the next
generation. We note that the inverse of extinction risk is
another measure of persistence stability, which suggests that
smaller escapements enhance persistence stability. For exces-
sively small escapement levels close to nil, however, the
extinction risk rises sharply due to plain overexploitation.

Proportional harvesting implies an elevated extinction
risk compared to threshold harvesting (see Fig. 8b, d, f).
This is because proportional harvesting is applied at all pop-
ulation sizes, even if they are already small and will be fur-
ther reduced by proportional harvesting. For large environ-
mental stochasticity, almost all simulated populations have
gone extinct under proportional harvesting (Fig. 8f). For
small and medium environmental stochasticity, increased
proportional harvesting can reduce extinction risk provided
it is not too intense. This is because proportional harvesting
stabilizes the population oscillations. However, if the har-
vesting proportion is too large, the extinction risk rises again
due to overexploitation (Fig. 8b, d). This may occur well
before maximum sustainable yield is achieved (Fig. 8d) and
over a wider parameter range than for threshold harvesting.
Hence, proportional harvesting seems inferior in promot-
ing persistence stability compared to threshold harvesting.
For constant-quota harvesting, basically all simulated pop-
ulations have gone extinct, which is why the results for this
harvesting strategy are not included in this Section.

Second, we observe that harvest frequency tends to
increase with increased threshold harvesting, i.e., for
lower escapements (see dashed red curves in Fig. 8a, c,
e). For small environmental stochasticity, harvest frequency
follows the deterministic staircase pattern predicted by our
analytical results in “Average long-term yield,” but with the
sharp transitions smoothened out by the random variations
(Fig. 8a). The latter can have twofold effects. On the one
hand, they lead to population sizes below the threshold
so that there is no harvesting. This is why there may be
occasionally no harvesting for T < K , when harvesting
would always occur in the deterministic system. However,
harvest frequency is almost 100% when the threshold
does not exceed about 80% of the carrying capacity.
On the other hand, noise can lead to large population
sizes so that there is harvesting even for large threshold
values way in excess of the carrying capacity where

there would be no harvesting in deterministic systems.
For larger environmental stochasticity, the noise smears
out the deterministic pattern even more, so that even low
escapements do not guarantee harvest in each generation
(Fig. 8f).

Proportional harvesting occurs in each generation,
provided the population has not gone extinct. The earlier
a population goes extinct, the lower the harvest frequency.
This is why proportional harvesting does not always have a
100% harvest frequency in the stochastic models (Fig. 8b,
d, f). Note that the frequency of proportional harvesting is
overall higher than that of threshold harvesting for small
environmental stochasticity (compare Fig. 8a and b), but
that it is generally lower than that of threshold harvesting
for large environmental stochasticity (compare Fig. 8e
and f). This runs counter to the usual notion that threshold
harvesting implies more harvest closures. The reason is that
threshold harvesting can sustain populations that would go
extinct under proportional harvesting.

Third, increased threshold harvesting can reduce the
variability in yield, measured by its coefficient of variation
(solid black curves in Fig. 8). In other words, the
predictability of the catch increases when setting lower
escapements; this holds for a wide range of escapement
values with an exception near the carrying capacity for low
environmental stochasticity (Fig. 8a), as the deterministic
population would never be harvested at this equilibrium. For
larger environmental stochasticity, the harvest variability
decreases throughout with lower escapements (Fig. 8c,
e). However, the relative variation in yield increases in
the unlikely case that the escapement approaches nil so
that the population would be harvested deterministically to
extinction.

For proportional harvesting, yield variability increases
with harvesting intensity when the latter is high. For low
and medium harvesting intensities, increased proportional
harvesting reduces yield variability. This is in contrast
with the classical result that yield variability increases with
increased harvesting intensity for logistically growing pop-
ulations in random, uncorrelated environments (Beddington
and May 1977). The reason for this difference may be that
increased proportional harvesting stabilizes the endogenous
population oscillations generated by the overcompensatory
population dynamics: the less variable the population size,
the less variable the yield.

Note that for both threshold and proportional harvesting
stronger environmental stochasticity enhances yield vari-
ability. While the yield variability under threshold harvest-
ing is larger than under proportional harvesting for lower
environmental stochasticity (compare Fig. 8a and b), it is
the other way around for higher environmental stochasticity
(compare Fig. 8e and f). This contradicts the usual notion
that threshold harvesting comes with higher yield variability
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than proportional harvesting in the absence of observation
error (Deroba and Bence 2008).

Fourth, threshold harvesting maximizes the mean harvest
at escapement values that are indistinguishable for the
considered levels of environmental stochasticity (see dotted
black curves in Fig. 8a, c, e). Previous research on
population models with continuous-time logistic growth
predicts that the escapement value maximizing the mean
harvest increases with enhanced environmental stochasticity
(Lande et al. 1997). For continuous-time population models,
in which density-dependence begins to act only close to
the carrying capacity, the escapement value maximizing
mean harvest decreases with increasing environmental
stochasticity (Sæther et al. 1996). Hence, these results may
not be applicable to the discrete-time overcompensatory
population models considered here.

With proportional harvesting, the harvesting intensities
maximizing mean harvest decrease with stronger environ-
mental stochasticity (Fig. 8b, d, f). This agrees with theory
based on continuous-time logistic population growth (Bed-
dington and May 1977). Note that the maximum mean
harvest decreases considerably with increasing environmen-
tal stochasticity for proportional harvesting, but remains
relatively unaffected for threshold harvesting (Fig. 8).

Observation error

Estimates of population size are usually inaccurate. Coeffi-
cients of variation due to sampling vary from 10% to almost
60% for some species of fish, birds, and mammals (see

Table 6.2 in Lande et al. 2003). In their review of harvesting
strategies, Deroba and Bence (2008) find that observation
error has a particularly strong effect on the performance of
harvesting strategies. The presence of observation error has
been shown to change the relative performance of alternative
harvesting strategies (see Table 1 in Deroba and Bence 2008),
indicating that proportional harvesting can outperform
threshold harvesting in terms of higher yields when there are
observation error and autocorrelated environmental stochas-
ticity. In the remaining part of this Section, we fix the levels of
environmental stochasticity and autocorrelation at the mean
values from the meta-analysis by Thorson et al. (2014), i.e.,
σenv = 0.74 and ρ = 0.43. We will vary the strength of
observation uncertainty measured in terms of σobs.

Figure 9a and b assume a 30.7% coefficient of vari-
ation due to observation error (σobs = 0.3). This level
of observation uncertainty causes elevated extinction risk
and increased harvest variability for both threshold and
proportional harvesting compared to the case with no obser-
vation error (compare Fig. 9a with Fig. 8c and Fig. 9b
with Fig. 8d, respectively). The mean harvest and harvest
frequency are both reduced with stronger observation uncer-
tainty under proportional harvesting (Fig. 9b) but remain
essentially unchanged under threshold harvesting (Fig. 9a).
These results are in line with some reports in the literature
that observation error seems to favor threshold harvesting
over proportional harvesting in uncorrelated environments
(Eggers 1993; Sladek Nowlis and Bollermann 2002) but
contradict other studies (e.g., Butterworth and Bergh 1993;
Walters and Parma 1996; Polacheck et al. 1999).

Fig. 9 Comparison of threshold
harvesting (left column) and
proportional harvesting (right
column) for different levels of
observation uncertainty (top row
σobs = 0.3, bottom row
σobs = 0.55). Shown are the
coefficient of variation of the
harvest, the mean harvest scaled
by the carrying capacity, the
extinction risk, and the harvest
frequency. Model
Eqs. (5.1)–(5.6) with the Ricker
map for r = 2.6, K = 60,
ρ = 0.43 including
demographic and environmental
stochasticity (σenv = 0.74).
Results are based on 10,000
replicates and 100 iterations for
each harvesting intensity, with
the initial 50 iterations discarded
to remove transient effects.
Random initial conditions
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Further increasing the observation error to a 59.4%
coefficient of variation (σobs = 0.55) affects the perfor-
mance of threshold harvesting marginally (compare Fig. 9c
with a). By contrast, the increased observation uncertainty
causes almost always extinction for proportional harvest-
ing (Fig. 9d). This suggests that threshold harvesting may
be more robust against observation uncertainty than propor-
tional harvesting.

Conclusions

As it is now widely recognized that harvesting and intrinsic
population dynamics as well as environmental factors
jointly impact the size and variability of populations (e.g.,

Bjørnstad and Grenfell 2001; Fromentin et al. 2001; Shelton
and Mangel 2011), we have considered a range of ecological
models and environmental conditions including iteroparity,
strong Allee effects, and demographic and environmental
stochasticity as well as observation uncertainty. Table 2
summarizes the main results of this paper. The emerging
theme is that threshold harvesting tends to enhance multiple
stability dimensions (dynamic, constancy, and persistence
stability) and seems more resilient and robust against abrupt
collapses than proportional and constant-quota harvesting.
Our analytical results in this respect are quite general
and apply to deterministic discrete-time single-species
models. Our simulation results focus on overcompensatory
population dynamics that are oscillatory. Overcompensation
has been observed in insects (Nicholson 1957; Costantino

Table 2 Summary of main results

Populations without Allee effect

(analytical results for semelparous species satisfying condition (A))

• TH is never destabilizing (“Dynamic stability”)—this also holds for iteroparous species (“Bimodal maps with iteroparity”).

• TH guarantees a globally asymptotically stable equilibrium for T ≤ K (Prop. 2.1) and the existence of period halvings when the carrying

capacity is unstable for T > K; the latter result additionally requires f to be an SU map (“Dynamic stability”).

• Constancy stability (measured by fluctuation range) always increases when T is lowered; this does not apply to iteroparous species with

cycles of a period > 2 (“Constancy and persistence stability”).

• Persistence stability (measured by inverse of lowest population abundance) increases for T > K and decreases for T < K

(“Constancy and persistence stability”).

Populations with Allee effect

(simulation results for the Ricker–Schreiber map)

• TH is able to prevent essential extinction (Fig. 5); the required threshold value is easy to find analytically (“Models with Allee effect”).

• If a sudden collapse occurs under TH, this is less dramatic than for PH and CH (Fig. 6).

• Allee threshold is only marginally increased by TH in comparison to PH and CH (Fig. 6).

• Dome-shaped yield curve without abrupt collapse amenable for adaptive management (Fig. 6).

Yield

(semelparous species satisfying condition (A))

• Analytical formulas of average long-term yield, including MSY, and long-term harvest frequency as a function of threshold values (for

periodic systems; “Average long-term yield”)

• There are additional local maxima in sustained average yield for T > K (“Average long-term yield”).

Random fluctuations

(simulation results for model (5.1)–(5.6) with the Ricker map, r = 2.6, K = 60, ρ = 0.43)

• Lower escapements tend to enhance persistence stability (by reducing extinction risk), reduce harvest closures (i.e., increase harvest

frequency), and increase yield predictability (by reducing harvest variability) (Figs 8 and 9).

• The escapement level producing maximum sustainable yield comes with low extinction risk, almost no harvest closures, and is robust

against levels of environmental variation and observation uncertainty (Figs. 8 and 9).

• TH sustains the population in many cases where PH and CH lead to population collapse (Figs. 8 and 9).

TH threshold harvesting, PH proportional harvesting, CH constant-quota harvesting
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et al. 1995), fish (Zipkin et al. 2008; Foss-Grant et al. 2016),
plants (Thrall et al. 1989; Buckley et al. 2001; Pardini et al.
2009), and ungulates (Grenfell et al. 1992).

When overcompensation produces small population
sizes, there is an increased risk of extinction, especially
in stochastic environments. In our stochastic simulations
(limited to certain life-history and autocorrelation param-
eters), threshold harvesting emerges as a more sustainable
strategy than proportional and constant-quota harvesting.
More specifically, threshold harvesting tends to sustain the
population in conditions where proportional and constant-
quota harvesting lead to population extinction. The under-
lying reason is that threshold harvesting is stopped below
the escapement and does not further reduce small popula-
tion sizes. Proportional and constant-quota harvesting lack
a built-in protection of small population sizes that may
occur as a result of overcompensation, random variation, or
observation uncertainty.

If threshold harvesting is used as a strategy for reducing
intrinsic population fluctuations, then a threshold value
near the carrying capacity seems a good choice as this
is predicted to maintain a mean population size similar
to the unharvested population and to have little burden
in terms of having to harvest. This has been observed in
deterministic (see Fig. 7; harvest frequency not explicitly
shown here) as well as stochastic models (see Figs. 8, 9;
mean population size not explicitly shown here) and also
in ciliate experiments (Fryxell et al. 2005). An escapement
level set at the carrying capacity may also be attractive
for controlling pest species that erupt due to unstable
dynamics. In a comparison of six control strategies to reduce
fluctuations, simulations by Tung et al. (2014) showed
that threshold harvesting with a threshold larger than the
carrying capacity leads to the lowest population sizes when
compared to the other control strategies, while removing the
largest harvest for highly chaotic populations.

If management aims at reducing a pest population size
as much as possible, or if the pest dynamics is stable, then
thresholds far below the carrying capacity are advisable, but
they come at the cost of almost always having to harvest,
in both deterministic and stochastic models. The fruit fly
experiments by Tung et al. (2016) implemented such low
threshold values, but they found almost no effect on the
average population size. However, their population census
was taken just before harvesting and is therefore affected by
increased population growth after reduced competition due
to harvesting (a “hidden” hydra effect, see Hilker and Liz
2013).

If threshold harvesting is used as an exploitation strategy,
the maximum sustainable yield is achieved at thresholds
far below the carrying capacity. On the experimental side,
neither the ciliate (Fryxell et al. 2005) nor the fruit fly
microcosms (Tung et al. 2016) showed evidence for the

dome-shaped relationship between yield and harvesting
effort (here: lower thresholds) that is ubiquitously found in
deterministic and stochastic models. This may be due to the
limited number of harvesting efforts that were investigated.
Tung et al. (2016) used two threshold values, which are
definitely too few to find a dome-shaped relationship.
Fryxell et al. (2005) found a monotonic rather than a dome-
shaped relationship, but the four threshold values that they
used (corresponding to 100%, 75%, 50%, and 25% of the
carrying capacity) may have also been chosen at levels not
revealing the full relationship.

In the literature, threshold harvesting is known to not
only produce higher yields than other harvesting strategies,
but also maintain larger and less variable population sizes
in many circumstances (Ricker 1958; Gatto and Rinaldi
1976; Getz and Haight 1989; Lande et al. 1997; Deroba
and Bence 2008). However, this comes at the cost of
increased yield variability, which is attributed to fishery
closures or ceased harvesting when the population size
falls below the threshold (Lande et al. 1997; Lillegård
et al. 2005). The simulations in this paper suggest
that harvesting closures are unlikely around thresholds
producing MSY, as harvest frequency approaches 100% for
thresholds of about 80% the carrying capacity or lower.
The threshold level producing MSY and the MSY level
itself are remarkably invariant to environmental variation
and observation error in the simulations performed. Here,
threshold harvesting outperforms both proportional and
constant-quota harvesting with respect to average yield (and
also yield constancy) in the presence of large environmental
stochasticity and observation error.

Such threshold values are well within the range
recommended in the fisheries literature (see Deroba and
Bence 2008, Sect. 6.4). However, in this range of threshold
values, the population variability basically vanishes, which
makes stock assessment more difficult (Hilborn and Walters
1992). The strategy of proportional threshold harvesting
adopts many features of threshold harvesting, but allows the
population size to vary over a wider range (Engen et al.
1997; Hilker and Liz 2019).

Moreover, there is the need and difficulty of knowing
the population size for applying threshold harvesting.
Measurement error and uncertainty have been shown to
change the optimal strategy for economic exploitation (e.g.,
Clark and Kirkwood 1986; Sethi et al. 2005; Deroba and
Bence 2008) and to exacerbate the biological problem of
overfishing (Roughgarden and Smith 1996). Haydon and
Fryxell (2004) show that reduced uncertainty by increased
understanding and prediction of population variation will
have only a modest effect on absolute yield, but may
substantially reduce the risk of overexploitation.

All these results suggest that the choice of threshold
values or management strategy in the first place depends on
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a suite of socio-economic, ecological, and political factors.
Many comparisons of harvesting strategies are based on
certain objectives such as maximizing yield, sometimes
also taking into account other factors (cf. Milner-Gulland
1998; Deroba and Bence 2008). Here, we have used
dynamical system approaches and numerical bifurcation
analyses to investigate population and harvest stability
over an entire range of threshold values. This is likely
to give a more holistic picture of system behavior than
simulations based on an optimization criterion only and
complements experiments performed with a limited set of
threshold values. However, all of our results are based on
single-species models. They ignore age structure, which is
known to affect stability results already in simple harvesting
models (e.g., Zipkin et al. 2009; Liz and Pilarczyk 2012).
And they account neither for simultaneous continuous-
time processes nor for ecosystem interactions. There is
increasing awareness to develop harvest control rules within
the context of ecological communities (e.g., Quinn and
Collie 2005; Walters et al. 2005; Matsuda and Abrams
2006). Travis et al. (2014) argue that the neglect of species
interactions in fisheries science and management may be
responsible for population collapse and cascading effects in
ecosystems.
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Appendix A

A.1 Proof of Proposition 2.1

The following proves Proposition 2.1 in the main text. The
assumptions made in this proposition are that T ≤ K and
condition (A) holds, that is, f is continuous and has a unique
fixed point K, with f (x) > x for all x ∈ (0, K) and
f (x) < x for all x > K .

Since g(x) = min{f (x), T }, it is clear that g(x) > x for
all x ∈ (0, T ), and g(x) ≤ T < x for all x > T . Thus, T
is the unique fixed point of g in (0, ∞). Choose an initial
condition x0 > 0. It is evident that gn(x0) ≤ T < K ,
for all integer n ≥ 1. Since g(x) ≥ x for all x ≤ T , it
follows that the sequence {gn(x0)}n≥1 is nondecreasing
and bounded, and therefore converges to a limit. By con-
tinuity, the limit is a positive fixed point of g and hence
limn→∞ gn(x0) = T .

A.2 Period-halving bifurcations for simple unimodal
maps

We recall that the Schwarzian derivative of a C3 map f is
defined by the expression

(Sf )(x) =
(

f ′′′(x)

f ′(x)

)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

whenever f ′(x) �= 0.
Many maps usually employed in discrete-time models

of population dynamics are SU-maps. This means that they
have a unique critical point c (which corresponds to a local
maximum) and (Sf )(x) < 0 for all x �= c. Well-known
examples of SU-maps are the Ricker map f (x) = xer(1−x),
r > 0, the quadratic map f (x) = rx(1 − x), r > 1, and the
Bellows map f (x) = ax/(1 + xm) for a > 1 and m ≥ 2.

The fact that f is an SU-map simplifies the dynamics
in various ways; perhaps the most relevant fact is that it
ensures that f and its iterates f n, n ≥ 2, have at most
one inflection point in each interval without critical points,
and this is a key property to limit the number of attractors.
For example, an asymptotically stable fixed point K of a
map f satisfying (A) is a global attractor if f 2 has no
other fixed point than K. Additional fixed points of f 2

can be easily excluded for SU-maps if K is asymptotically
stable, but they can appear for general unimodal maps. For
example, the Ricker map f (x) = xe1.885(1−x) has a positive

Fig. 10 Plots of the graph
y = f 2(x) = f (f (x)) of the
second iteration of f (blue
curve), and the line y = x

(black). A: f (x) = xe1.885(1−x)

is an SU-map.
B: f (x) = 7.86x − 23.31x2 +
28.75x3 − 13.30x4 is unimodal
but not an SU-map

a b
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equilibrium K = 1 with f ′(K) = −0.885, and hence, it is
asymptotically stable. Since f is an SU-map, K is the only
fixed point of f 2, and therefore, it is a global attractor of f
(Fig. 10a). However, the unimodal map f : [0, 1] → [0, 1]
defined by f (x) = 7.86x − 23.31x2 + 28.75x3 − 13.30x4

has a unique positive equilibrium K ≈ 0.726, with f ′(K) ≈
−0.885, as in the previous example. But f is not an SU-
map and f 2 has five positive fixed points (Fig. 10b). Of
course, K is not a global attractor for f in this case, since
an attracting 2-cycle coexists with the attracting fixed point.
This polynomial has been used in Singer (1978) to illustrate
the importance of the Schwarzian derivative.

A more general result establishes that SU-maps satisfy-
ing condition (A) have at most one attracting cycle (see
Theorem 5.1 and Corollary 5.9 in Sharkovsky et al. 1997).
Assuming that the map f has only a finite number of peri-
odic orbits, Theorem 5.3 in the same reference ensures that
the attracting cycle has period 2N , for an integer N ≥ 0,
and f has only cycles of period 2i , with 0 ≤ i ≤ N . Fur-
thermore, the properties of simple cycles (Sharkovsky et al.
1997, Chapters 3 and 4) guarantee the simple structure of
the period-halving bifurcations that occur as T is decreased:
an attracting cycle {x1, x2, . . . , xp} (x1 < x2 < · · · < xp)
of period p = 2i disappears through a period-halving bifur-
cation when T reaches the unique value xq ∈ (xp−1, xp)

such that f 2i−1
(xq) = xq .

We give a flavor of these results, without going deeply
into technical details.

A cycle of f is defined by a permutation. For example,
a 2-cycle {x1, x2} of (minimal) period 2 is defined by the
permutation of length 2

π2 =
(

1 2
2 1

)
,

which means that f (x1) = x2 and f (x2) = x1. The
permutation π2 is called minimal. The concept of minimal
permutation can be defined by induction when the length
of the permutation is an even number: a permutation of
length 4 is minimal if the sets {1, 2} and {3, 4} are invariant
under π2 and the restriction of π2 to each of these sets is
minimal. If the length of π is p = 2k, then the permutation
π is minimal if the sets {1, 2, . . . , k} and {k + 1, k +
2, . . . , 2k} are invariant under π2 and the restriction of
π2 to each of these sets is minimal. Examples of minimal
permutations are

π4 =
(

1 2 3 4
3 4 2 1

)
, π8 =

(
1 2 3 4 5 6 7 8
5 6 7 8 3 4 2 1

)
.

Notice that

π2
8 =

(
1 2 3 4 5 6 7 8
3 4 2 1 7 8 6 5

)

is composed of two minimal permutations of length 4, and

π4
8 =

(
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)

is composed of four minimal permutations of length 2.
A cycle of f is of minimal type if its associated

permutation is minimal. By Theorem 3.6 in Sharkovsky
et al. (1997), if a map has only cycles whose periods are a
power of 2, then all cycles are of minimal type. These maps
are called simple maps, and their cycles are referred to as
simple cycles.

The properties of simple cycles are responsible for
the fine bifurcation structure of Eq. (2.2). For example,
if {x1, x2, . . . , x8} is the 8-cycle associated to π8, then
f 4(x7) = x8 and f 4(x8) = x7. Thus, there exists y4 ∈
(x7, x8) such that f 4(y4) = y4. Moreover, y4 = max{x >

0 : f 4(x) ≥ x}.
Since the 4-cycle {y1, y2, y3, y4} is simple, it follows that

f 2(y3) = y4 and f 2(y4) = y3. Therefore, there exists
z2 ∈ (y3, y4) such that f 2(z2) = z2. Moreover, z2 =
max{x > 0 : f 2(x) ≥ x}. Finally, there exists a fixed point
K ∈ (z1, z2), where z1 = f (z2), and K = max{x > 0 :
f (x) ≥ x}.

The values T1 = y4, T2 = z2, and T3 = K provide the
period-halving bifurcation points of Eq. (2.2) as T decreases.
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