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Oscillations and waves in a virally infected plankton system
Part I: The lysogenic stage�
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Abstract

A model of phytoplankton–zooplankton dynamics is considered for the case of lysogenic viral infection of the phytoplankton
population. The phytoplankton population is split into a susceptible (S) and an infected (I) part. Both parts grow logistically,
limited by a common carrying capacity. Zooplankton (Z) is grazing on susceptibles and infected. The local analysis of the
S–I–Z differential equations yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly
interesting is the spatio-temporal behaviour, modelled by deterministic and stochastic reaction–diffusion equations. Spatial
spread or suppression of infection will be presented just as well as competition of concentric and/or spiral population waves with
non-oscillatory sub-populations for space. The external noise can enhance the survival and spread of susceptibles and infected,
respectively, that would go extinct in a deterministic environment.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous papers have been published about pat-
tern formation and chaos in minimal prey–predator
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models of phytoplankton–zooplankton dynamics
(Scheffer, 1991a; Malchow, 1993; Pascual, 1993;
Truscott and Brindley, 1994; Malchow, 1996, 2000b;
Malchow et al., 2001, 2004b). Different routes to
local and spatio-temporal chaos (Scheffer, 1991b;
Kuznetsov et al., 1992; Rinaldi et al., 1993; Sherratt
et al., 1995; Scheffer et al., 1997; Steffen et al., 1997;
Petrovskii and Malchow, 1999, 2001; Malchow et al.,
2002), diffusion- and differential-flow-induced stand-
ing and travelling waves (Malchow, 1993; Menzinger
and Rovinsky, 1995; Malchow, 2000a; Satnoianu and
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Menzinger, 2000; Satnoianu et al., 2000; Malchow
et al., 2003) as well as target patterns and spiral
waves (Medvinsky et al., 2000, 2002) have been
found. Also the impact of external noise on patchiness
and transitions between alternative stable population
states has been studied (Steele and Henderson, 1992;
Malchow et al., 2002; Sarkar and Chattopadhyay,
2003; Malchow et al., 2004a).

Much less than on plankton patchiness and bloom-
ing is known about marine viruses and their role in
aquatic ecosystems and the species that they infect,
for reviewsFuhrman (1999); Suttle (2000)as well as
Wommack and Colwell (2000). There is some evi-
dence that viral infection might accelerate the termi-
nation of phytoplankton blooms (Jacquet et al., 2002).

Also the understanding of the importance of
lysogeny is just at the beginning (Wilcox and
Fuhrman, 1994; Jiang and Paul, 1998; McDaniel
et al., 2002; Ortmann et al., 2002). Contrary to
lytic infections with destruction and without repro-
duction of the host cell, lysogenic infections are a
strategy whereby viruses integrate their genome into
the host’s genome. As the host reproduces and du-
plicates its genome, the viral genome reproduces,
too.

Mathematical models of the dynamics of virally
infected phytoplankton populations are rare as well.
The already classical publication is byBeltrami and
Carroll (1994), more recent work is ofChattopadhyay
and Pal (2002)andChattopadhyay et al. (2003). All
these papers deal with lytic infections and mass action
incidence functions (Nold, 1980; Dietz and Schenzle,
1985; McCallum et al., 2001).

In this paper, we focus on modelling the influence
of lysogenic infections and proportionate mixing inci-
dence function (frequency-dependent transmission) on
the local and spatio-temporal dynamics of interacting
phytoplankton and zooplankton. Furthermore, the im-
pact of multiplicative noise (Allen, 2003; Anishenko
et al., 2003) is investigated.

2. The mathematical model

The model byScheffer (1991a)for the prey–predator
dynamics of phytoplanktonP and zooplanktonZ
is used as the starting point. It reads in timet and
two spatial dimensions�r={x, y} with dimensionless

quantities, scaled followingPascual (1993)

∂P

∂t
= rP(1 − P) − aP

1 + bP
Z + d�P, (1)

∂Z

∂t
= aP

1 + bP
Z − m3Z + d�Z. (2)

There is logistic growth of the phytoplankton with
intrinsic rater and Holling-type II grazing with max-
imum ratea as well as natural mortality with ratem3
of the zooplankton. The growth rater is scaled as the
ratio of local raterloc and spatial mean〈r〉. The dif-
fusion coefficientd describes eddy diffusion. There-
fore, it must be equal for both species. The dynamics
of a, top predator, i.e., planktivorous fish is neglected
because the focus of this paper is on the influence
of virally infected phytoplankton. The phytoplankton
populationP is split into a susceptible partX1 and an
infected portionX2. Zooplankton is simply renamed
to X3. Then, the model system reads for symmetric
inter-and intraspecific competition of susceptibles and
infected

∂Xi(�r, t)
∂t

= fi[X(�r, t)] + d�Xi(�r, t), i = 1, 2, 3;
(3)

where

f1 = r1X1(1 − X1 − X2) − aX1

1 + b(X1 + X2)
X3

−λ
X1X2

X1 + X2
, (3a)

f2 = r2X2(1 − X1 − X2) − aX2

1 + b(X1 + X2)
X3

+λ
X1X2

X1 + X2
− m2X2, (3b)

f3 = a(X1 + X2)

1 + b(X1 + X2)
X3 − m3X3. (3c)

Proportionate mixing with transmission coefficient
λ as well as an additional disease-induced mortality
of infected (virulence) with ratem3 are assumed. The
vector of population densities isX = {X1, X2, X3}.
In the case of lytic infection, the first term on the
right-hand side ofEq. (3b)would describe the losses
due to natural mortality and competition. Here, lyso-
genic infections withr1 = r2 = r will be considered.
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Fig. 1. Local dynamics with (a) extinction of infected form2 > λ, (b) extinction of susceptibles form2 < λ and (c) coexistence of
susceptiblesX1, infectedX2 and zooplanktonX3 for m2 = λ, m3 = 0.5.
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However, it is a highly simplified model because the
growth rate of susceptibles is usually higher than
that of infected (Suttle et al., 1990). Furthermore, the
lysogenic replication cycle of viruses is very sensitive
to environmental changes and very quickly switches
to the lytic cycle. This is left for the second part of
the paper.

Furthermore, multiplicative noise is introduced in
Eq. (3) in order to study environmental fluctuations,
i.e.,

∂Xi(�r, t)
∂t

= fi[X(�r, t)] + d�Xi(�r, t)
+ωi[X(�r, t)]ξi(�r, t), i = 1, 2, 3; (4)

where ξi(�r, t) is a spatio-temporal white Gaussian
noise, i.e., a random Gaussian field with zero mean
and delta correlation

〈ξi(�r, t)〉 = 0, 〈ξi(�r1, t1)ξi(�r2, t2)〉
= δ(�r1 − �r2)δ(t1 − t2), i = 1, 2, 3. (4a)

ωi[X(�r, t)] is the density dependent noise intensity.
The stochastic modelling of population dynamics
requires this density dependence, i.e., multiplicative
noise. Throughout this paper, it is chosen

ωi[X(�r, t)] = ωXi(�r, t), i = 1, 2, 3;
ω = constant (4b)

3. The deterministic local dynamics

At first, the local dynamics is studied, i.e., we
look for stationary and oscillatory solutions of sys-
tem (3) for d = 0. Stationary solutions are marked
by XSno

i , i = 1, 2, 3. Furthermore, we introduce the
parameter

mcr
3 = a(XSno

1 + XSno
2 )

1 + b(XSno
1 + XSno

2 )
.

Analytical and numerical investigations yield the
following selected equilibria.

(0) Trivial solution XS00
1 = XS00

2 = XS00
3 = 0, al-

ways unstable.
(1) Endemic states with and without predation.

(a) XS11
1 > 0, XS11

2 > 0, XS11
3 > 0 if m2 = λ

andm3 < mcr
3 , oscillatory or non-oscillatory

stable, multiple stable equilibria possible.
(b) XS12

1 > 0, XS12
2 > 0, XS12

3 > 0 if m2 = λ

andm3 < mcr
3 , non-oscillatory stable.

(2) Extinction of infected with and without predation.
(a) XS21

1 > 0, XS21
2 > 0, XS21

3 > 0 if m2 > λ

andm3 < mcr
3 , oscillatory or non-oscillatory

stable.
(b) XS22

1 > 0, XS22
2 > 0, XS22

3 > 0 if m2 > λ

andm3 < mcr
3 , non-oscillatory stable.

(3) Extinction of susceptibles with and without pre-
dation.
(a) XS31

1 > 0, XS31
2 > 0, XS31

3 > 0 if m2 > λ

andm3 < mcr
3 , oscillatory or non-oscillatory

stable.
(b) XS32

1 > 0, XS32
2 > 0, XS32

3 > 0 if m2 > λ

andm3 < mcr
3 , non-oscillatory stable.

For m2 > λ, the infected go extinct (solutions 2a
and b), form2 > λ, the susceptibles do (solutions
3a and b). In the case ofm2 = λ, susceptibles and
infected coexist (endemic states 1a and b). Because
of the symmetry of the growth terms of suscepti-
bles and infected, the initial conditions determine
their final dominance in the endemic state, i.e., if
X1(t = 0) > X2(t = 0) thenX1(t) > X2(t)∀t. A cor-
responding example is presented inFig. 1 for r = 1
anda = b = 5. These three parameter values will be
kept for all simulations.

The stable prey–predator oscillations are presenta-
tions of solutions (2a), (3a) and (1a), respectively.

The local dynamics of model (3) is well-known and
simple for a single prey. There can be a Hopf bifur-
cation point, e.g., for decreasing mortalitym3 of the
predator. For the parameters inFig. 1. this point has
been already passed. A slight increase ofm3 from 0.5
to 0.625 yields multiple equilibria and also demon-
strates the dependence of the endemic states on the
initial conditions. InFig. 2afor X1(0) > X2(0), one
still finds the oscillatory solution (1a). However, the
opposite choiceX2(0) > X1(0) in Fig. 2b, results in
damping of the oscillations, i.e., the different initial
conditions belong to different basins of attraction in
phase space.

After this rough investigation of the deterministic
local behaviour, we proceed now to the stochastic spa-
tial dynamics.
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Fig. 2. Endemic state (1a) with initial conditions in different basins of attraction: (a) stable and (b) damped oscillation.m2 = λ = 0.2,
m3 = 0.625.

4. The deterministic and stochastic spatial
dynamics

Much has been published about the spatio-temporal
selforganization in prey–predator communities, mod-
elled by reaction–diffusion (−advection) equations,
the references in the introduction. Much less is known
about equation-based modelling of the spatial spread
of epidemics, a small collection of papers includes
Grenfell et al. (2001); Abramson et al. (2003); Lin
et al. (2003)andZhdanov (2003).

In this paper, we consider the spatio-temporal dy-
namics of the plankton model (4), i.e., zooplankton,
grazing on susceptible and virally infected phyto-
plankton, under the influence of environmental noise
and diffusing in horizontally two-dimensional space.
The diffusion terms have been integrated using the
semi-implicit Peaceman-Rachford alternating direc-
tion scheme,Thomas (1995). For the interactions
and the Stratonovich integral of the noise terms, the
explicit Euler-Maruyama scheme has been applied
(Kloeden and Platen, 1992; Higham, 2001).
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Fig. 3. Spatial coexistence of susceptibles (two upper rows), infected (two middle rows) and zooplankton (two lower rows) form2 = λ = 0.2,
m3 = 0.5, d = 0.05. No noiseω = 0 and 0.25 noise intensity, respectively, with equal initial conditions (left column). Periodic boundary
conditions.
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Fig. 4. Spatial coexistence of susceptibles (two upper rows) and zooplankton (two lower rows). Extinction of infected (third row) for
m2 = 0.2 > λ = 0.19, m3 = 0.5, d = 0.05 and no noise. Survival of infected forω = 0.25 noise intensity (fourth row).

The following series of figures summarizes the re-
sults of the spatio-temporal simulations for growth and
interaction parameters fromSection 3, but now includ-
ing diffusion and noise.

Periodic boundary conditions have been chosen for
all simulations.

The initial conditions are localized patches in empty
space, and they are the same for deterministic and
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Fig. 5. Spatial coexistence of infected (two middle rows) and zooplankton (two lower rows). Extinction of susceptibles (first row) for
m2 = 0.2 < λ = 0.21, m3 = 0.5, d = 0.05 and no noise. Survival of susceptibles forω = 0.25 noise intensity (second row).

stochastic simulations. They can be seen in the left col-
umn of all following figures. The first two rows show
the dynamics of the susceptibles for deterministic and
stochastic conditions, the two middle rows show the

infected and the two lower rows the zooplankton. For
Figs. 3–5, there are two patches, one with zooplank-
ton surrounded by susceptible phytoplankton (upper
part of the model area) and one with zooplankton sur-
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Fig. 6. Spatial coexistence of susceptibles (two upper rows), infected (two middle rows) and zooplankton (two lower rows) form2 = λ = 0.2,
m3 = 0.625, d = 0.05. Without noise trapping and almost extinction of infected in the center (third row). Withω = 0.25 noise intensity
noise-enhanced survival and escape of infected (fourth row). Phenomenon of dynamic stabilization of a locally unstable equilibrium (first
and fifth row).
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Fig. 7. Spatial coexistence of susceptibles (two upper rows), infected (two middle rows) and zooplankton (two lower rows) form2 = λ = 0.2,
m3 = 0.625,d = 0.05. Without noise trapping and almost extinction of susceptibles in the center (first row). Withω = 0.25 noise intensity
noise-enhanced survival and escape of susceptibles (second row).
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rounded by infected (on the right of the model area).
For Figs. 6 and 7, there are central patches of all three
species. InFig. 6, susceptibles are ahead of infected
that are ahead of zooplankton. InFig. 7, infected are
ahead of susceptibles that are ahead of zooplankton.
In all figures, this special initial configuration leads at
first to the propagation of concentric waves for the de-
terministic case in rows 1, 3 and 5. For the stochastic
case in rows 2, 4 and 6, these (naturally unrealistic)
waves are immediately blurred and only a leading dif-
fusive front remains.

In Fig. 3, one can see the final spatial coexistence
of all three species form2 = λ. The localized initial
patches generate concentric waves that break up after
collision and form spiral waves in a deterministic
environment. The noise only blurs these unrealistic
patterns. The grey scale changes from high popula-
tion densities in white colour to vanishing densities
in black.

This changes form2 > λ and m2 < λ in Figs. 4
and 5, respectively. Whereas in the deterministic
case infected or susceptibles go extinct, the noise en-
hances their survival and spread under unfavourable
conditions.

In Fig. 6, the deterministic simulations yield the
dynamic stabilization of the locally unstable focus
in space and a long plateau is formed with a leading
diffusive front ahead, cf.Petrovskii and Malchow
(2000); Malchow and Petrovskii (2002). Furthermore,
the infected are somehow trapped in the center and
go almost extinct. The noise enhances the “escape”,
spread and survival of the infected.

In Fig. 7, the dynamic stabilization is not so clearly
seen. However, the noise enhances the “escape”,
spread and survival of the susceptibles here.

5. Conclusions

A conceptual biomass-based model of phytoplank-
ton–zooplankton prey–predator dynamics has been
investigated for temporal, spatial and spatio-temporal
dissipative pattern formation in a, deterministic and
noisy environment, respectively. It has been as-
sumed that the phytoplankton is partly virally in-
fected and the virus has a lysogenic replication cycle,
i.e., also the infected phytoplankton is still able to
reproduce.

The equal growth rates of susceptibles and infected
have led to the situation that, in a non-fluctuating
environment, the ratio of the mortality of the infected
and the transmission rate of the infection controls
coexistence, survival or extinction of susceptibles
and infected. A fluctuating environment enhances the
survival and the spatial spread of the “endangered”
species. However, noise has not only supported the
spatio-temporal coexistence of susceptibles and in-
fected but it has been necessary to blur distinct ar-
tificial population structures like target patterns or
spirals and to generate more realistic fuzzy patterns.

Forthcoming work has to consider differing growth
rates of susceptible and infected species as well as the
critical noise-induced switch from lysogenic to lytic
viral replications and the resulting spatio-temporal dy-
namics of the plankton populations.
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