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H I G H L I G H T S
� We present an adaptive harvesting strategy to reduce population fluctuations.

� The strategy is useful for exploited species or to prevent outbreaks.
� It provides an alternative to adaptive limiter control.
� Transient dynamics can profoundly raise the short-term yield.
� We propose adjusted control strategies that reduce the length of transients.
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a b s t r a c t

Fluctuations in population size are in many cases undesirable, as they can induce outbreaks and
extinctions or impede the optimal management of populations. We propose the strategy of adaptive
threshold harvesting (ATH) to control fluctuations in population size. In this strategy, the population is
harvested whenever population size has grown beyond a certain proportion in comparison to the pre-
vious generation. Taking such population increases into account, ATH intervenes also at smaller popu-
lation sizes than the strategy of threshold harvesting. Moreover, ATH is the harvesting version of adaptive
limiter control (ALC) that has recently been shown to stabilize population oscillations in both experi-
ments and theoretical studies. We find that ATH has similar stabilization properties as ALC and thus
offers itself as a harvesting alternative for the control of pests, exploitation of biological resources, or
when restocking interventions required from ALC are unfeasible. We present numerical simulations of
ATH to illustrate its performance in the presence of noise, lattice effect, and Allee effect. In addition, we
propose an adjustment to both ATH and ALC that restricts interventions when control seems unneces-
sary, i.e. when population size is too small or too large, respectively. This adjustment cancels prolonged
transients.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their recurring and sometimes unpredictable ups and
downs, fluctuations in population size pose several challenges for
biological conservation and the management of wildlife and
exploited populations. Intervention strategies have been devel-
oped to reduce the outbreak frequency and extinction probability
(Hilker and Westerhoff, 2007a), stabilize the fluctuations (Hudson
et al., 1998; Korpimäki and Norrdahl, 1998; Desharnais et al.,
2001), and maximize the yield of harvested populations (Lande
et al., 1995; Hudson and Dobson, 2001).
Here, we propose and analyze a harvesting strategy that takes
effect only if the population size has grown by at least a certain
factor in comparison to the previous census. This conditional
strategy differs from textbook strategies like constant-effort and
constant-yield harvesting, as it responds only to population
increases sufficiently large. We shall refer to this strategy as
adaptive threshold harvesting (ATH) and the harvesting version of
adaptive limiter control (h-ALC), because it is closely related to
threshold harvesting, also known as limiter control (LC), on the
one hand and to adaptive limiter control (ALC) on the other hand.

Threshold harvesting removes individuals from a population
whenever population size exceeds a fixed threshold value (Lande
et al., 1997; Fryxell et al., 2005). This harvest control rule is
equivalent to limiter control, which is a method originating from
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physics (Sinha, 1994; Corron et al., 2000; Wagner and Stoop, 2001)
and has been applied to problems as diverse as computer archi-
tecture design (Ditto and Sinha, 2015), cardiac rhythms (Glass and
Zeng, 1994), commodity markets (He and Westerhoff, 2005), and
population dynamics (Hilker and Westerhoff, 2005, 2006). Limiter
control methods have the advantage that no detailed information
of the system is required, which is why they are easy and fast to
implement. Similar to some other population control methods
(e.g. McCallum, 1992; Parthasarathy and Sinha, 1995; Solé et al.,
1999; Liz, 2010; Dattani et al., 2011; Franco and Perán, 2013; Tung
et al., 2014), they directly affect the state variables, i.e. the popu-
lation size, by restocking (adding) or harvesting (removing) indi-
viduals. This approach seems particularly apt for ecological sys-
tems that are characterized by intrinsic uncertainty and ‘inacces-
sibility’ of parameters such as life-history traits.

Adaptive limiter control has been recently proposed by Sah
et al. (2013). The idea of ALC is to add individuals to the population
whenever the population size falls below a certain fraction of its
value in the previous generation. The term ‘adaptive’ follows from
the fact that the threshold value of the population size triggering
control is a fraction of the previous population size, and as such
variable over time. The efficacy of ALC to stabilize biological
populations has been shown in laboratory experiments on popu-
lations and metapopulations of the fruit fly Drosophila melanoga-
ster (Sah et al., 2013) as well as by analytical results (Franco and
Hilker, 2013) and numerical simulations (Sah et al., 2013; Franco
and Hilker, 2013; Tung et al., 2014; Sah and Dey, 2014). ALC is
therefore one of the few well-studied control strategies in ecology.

As a restocking strategy, ALC is likely to be applied in the
context of conservation and re-introduction programs. Depending
on the management objective and the ecological objective, how-
ever, there is clearly a need for an alternative based on harvesting.
For instance, management programs directed to the control of pest
species and species of commercial value (e.g., fisheries) aim to
remove individuals from the population. Obviously, ATH appears
relevant in the context of controlling outbreaks of nuisance species
and exploiting biological resources.

Moreover, independent of any management objectives, there
may be logistical restrictions of restocking strategies. They require
the availability of a versatile source of individuals for supple-
menting the population if needed. However, such a pool of indi-
viduals may be difficult or even impossible to create or to maintain
in practice. For instance, some organisms cannot be kept in cap-
tivity or do not reproduce in such conditions. Furthermore, there
may be issues related to translocation and releasing individuals.
Maintaining and managing a stock may be costly, labor-intensive,
logistically challenging, and time-consuming. By contrast, remov-
ing individuals is certainly ‘easier’ than restocking in some situa-
tions. It should be noted, though, that removal methods may be
difficult to implement as well and may raise ethical concerns
about killing animals.

Being based on harvesting rather than restocking, the harvest
control strategy presented in this paper is the harvesting version of
adaptive limiter control. That is, whenever the population size
exceeds a limit that is a certain proportion of the population size in
the preceding generation, harvesting takes place and reduces the
population size to that limit. In contrast to threshold harvesting, the
critical population size above which interventions take place is not
fixed, but is adaptive in response to the previous population size.

While the kind of control (restocking vs. harvesting) is moti-
vated by the biological application, replacing restocking by har-
vesting may appear straightforward from a mathematical point of
view. However, there is no reason to believe that the dynamical
behavior induced by ALC on the one hand and by its harvesting
version ATH on the other hand is similar. This becomes clear when
considering other control strategies that have harvesting and
restocking variants. For instance, proportional feedback control
(Güémez and Matías, 1993) is able to stabilize a population
towards a positive equilibrium when a constant proportion of the
population is harvested (Liz, 2010), but the restocking variant
adding a constant proportion of the population fails to stabilize
the equilibrium (Carmona and Franco, 2006). Constant feedback
control provides another dramatic example. While adding or
removing a constant number of individuals each generation can
stabilize chaotic dynamics (McCallum, 1992; Gueron, 1998; Stone
and Hart, 1999), the latter form of intervention can drive the
population extinct at small removal rates, even when the popu-
lation is able to persist for higher removal rates (Sinha and Par-
thasarathy, 1996; Schreiber, 2001). These examples arise in the
simplest case of single-species models given by unimodal maps
that we also consider in this paper.

In the next section, we introduce the mathematical model
describing adaptive threshold harvesting. We then analyze its
effect on the constancy stability in terms of two different mea-
sures, namely the fluctuation range and the fluctuation index.
Mathematical proofs of the results presented in this section can be
found in the Appendix. Since ATH is a harvesting strategy and the
individuals removed may be actually of economic interest (e.g. in
fisheries), Section 4 considers the mean yield per generation, both
in the long-run and the short-run. Section 5 focuses on the short-
term dynamics generated by the interventions. Transients are
often ignored in theoretical studies of ecological systems, which is
why we discuss in some detail how to deal with them. In parti-
cular, we propose adjusted versions of both ATH and ALC that
reduce the length of transients and thus accelerate the approach to
the long-term dynamics. Section 6 explores the robustness of ATH
against noise, lattice effect, and Allee effect.
2. Adaptive threshold harvesting

2.1. Population growth model

The effect of a control method on a biological population
depends on the underlying population dynamics, so we start by
describing the model of the uncontrolled system. We assume that
the population dynamics is described by a first-order one-
dimensional difference equation

xtþ1 ¼ f ðxtÞ; x0A ½0;1Þ; tAN; ð1Þ
where xt denotes the population size at time step t. The population
production map f is assumed to satisfy the following conditions:

(C1) f : ½0;b�-½0; b� (b¼1 is allowed) is continuously differenti-
able and such that f ð0Þ ¼ 0, f ðxÞ40 for all xA ð0; bÞ and
f 0ð0þ Þ; f 0ðb� ÞAR.

(C2) f has two non-negative fixed points x¼0 and x¼ K40, with
f ðxÞ4x for 0oxoK and f ðxÞox for x4K .

(C3) f has a unique critical point dAð0;KÞ in such a way that
f ðdÞrb, f 0ðxÞ40 for all xA ð0; dÞ and f 0ðxÞo0 for all xAðd; bÞ.

These conditions describe a unimodal population production
function peaking at x¼d and are standard assumptions in the
study of discrete-time population dynamics (e.g. May, 1976; Singer,
1978; Cull, 1981; Schreiber, 2001; Carmona and Franco, 2006;
Franco and Hilker, 2013). Biologically speaking, the population has
two fixed points, namely (i) the extinction state x¼0 and (ii) a
positive equilibrium x¼K, which corresponds to the carrying
capacity of the population. Initial population sizes are smaller
than b, and the dynamics are overcompensatory with no demo-
graphic Allee effect. Examples include the frequently considered
population dynamics models in their overcompensatory regimes,



Fig. 1. During the first 20 generations, the population is uncontrolled and follows Eq. (1) for the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with growth parameter r¼3 and carrying
capacity K¼60. In the next 20 generations, the population is controlled by adaptive threshold harvesting with intensity c¼ 2=3.
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Fig. 2. Adaptive threshold harvesting only takes place when the straight line atþ1

¼ at=c is under the graph of the population production map f. The activation
threshold AT is defined by their intersection. The bold red curve represents the
population production function (3) for the controlled system. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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e.g. the Ricker (1954), Hassell (1975), and generalized Beverton–
Holt (Bellows, 1981) maps.

2.2. Modelling adaptive threshold harvesting

Adaptive threshold harvesting exerts control on a population
when the population size xt at time step t exceeds a certain pro-
portion of its value in the preceding generation. The control then
restores the population size back to that threshold by harvesting
the surplus individuals. Thus, ATH takes action if the population
has grown beyond a certain proportion within a time step, which
is why ATH can be seen as aiming to prevent population booms.

As ALC, this new limiter method is “adaptive” because the
magnitude of the intervention is nonconstant and depends on the
system state at the previous time step. Fig. 1 shows how ATH
modifies the dynamics of the population and, in particular, how
the fluctuation range of the population size is reduced.

When applying ATH, there are two different population sizes at
time step t, namely bt, the population size before ATH intervention
and at, the population size after intervention. In particular, btZat
because ATH never adds individuals to the population. With these
notations, the dynamics of ATH is determined by the following
system of difference equations:

btþ1 ¼ f ðatÞ and atþ1 ¼
btþ1; btþ1rat=c;

at=c; btþ14at=c;

(
ð2Þ

where cAð0;1Þ is a control parameter measuring the ATH inten-
sity. Substituting the value for btþ1 from the first equation of
system (2) into the second one, we obtain that the population
dynamics is determined by the first-order difference equation

atþ1 ¼
f ðatÞ; f ðatÞrat=c;

at=c; f ðatÞ4at=c;

(
ð3Þ

which is piecewise smooth and can be written in one line by using
the minimum function,

atþ1 ¼minff ðatÞ; at=cg:

2.3. Activation threshold

By definition, ATH only takes effect when the population size
exceeds a proportion of its magnitude in the preceding generation.
Any management implementing control must therefore wait until
measuring the population size in generation t to decide about the
need for intervention. Fortunately, the analysis of (3) reveals the
existence of a ‘hidden’ threshold level AT such that no control will
be necessary in generation t if the population size in the preceding
generation is above this value.

Such knowledge can be of practical interest because no pre-
paration will need to be taken in this situation. Note that the
activation threshold for ALC has a different meaning, namely that
control actions only take place if the activation threshold is
exceeded in the preceding time step. In order to calculate the
activation threshold for a given control parameter, we need to
know the population production function which can be obtained
from fitting to time series data. Proposition 1 in the Appendix
shows the existence of AT for control intensities c4 infxA ð0;bÞ x=f ðxÞ
and its precise definition.

Although the determination of AT in practical situations can be
difficult due to noise or lack of information about the system
variables, in deterministic systems its knowledge helps the con-
troller to know early on when an intervention is unnecessary in
the next generation.
3. Stabilization of fluctuations

Here we describe how adaptive threshold harvesting affects
constancy stability, i.e. the propensity of the population size to
stay essentially unchanged (Grimm and Wissel, 1997). First of all,
ATH is not able to stabilize oscillations towards an equilibrium
point (see Proposition 2 in the Appendix). This is a property that
ATH shares with ALC (Franco and Hilker, 2013). In the remainder of
this section, we consider two different measures of constancy
stability, namely the fluctuation range and the fluctuation index.
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3.1. Fluctuation range

The fluctuation range gives the upper and lower bounds of the
population size, in between which the oscillations take place. It
has been employed by Franco and Hilker (2013) to study stability
properties of ALC. The smaller the fluctuation range, the more
stable the population dynamics from the constancy point of view.

The ATH method can reduce the fluctuation range compared to
the uncontrolled system. We illustrate this in Fig. 3a, where the
fluctuation range decreases as the control intensity is increased.
The figure suggests that ATH confines the population size within a
region around the positive but unstable equilibrium K. The fol-
lowing theorem states that such a “trapping region” indeed exists
and is completely determined by the map f and the control para-
meter c. The proof is provided in the Appendix.

Theorem 1. Assume that (C1)–(C3) hold and cA ð0;1Þ is such that
the activation threshold AT exists. Then, applying ATH with intensity c
confines the population sizes at for any a0Að0; bÞ within an interval
Ia ¼ ½lðcÞ;uðcÞ� around the positive equilibrium K, with endpoints
given by the expressions

lðcÞ ¼
f ðAT=cÞ; drAT ;

f ðf ðdÞÞ; d4AT ;

(
and uðcÞ ¼

AT=c; drAT ;

f ðdÞ; d4AT :

(
ð4Þ

If a specific goal is to be achieved, such as suppressing the
population size below an upper limit; beyond a lower limit; or
within two limits, the control intensity to achieve these goals can
be determined. This is possible because the trapping region is
completely determined by the map f and the control parameter.

The trapping region given in Theorem 1 is global, that is, the
reduction of the fluctuation range does not depend on the initial
condition. Fig. 3a shows a bifurcation diagram for ATH together
with the limits of the intervals defining the trapping region given
by Eq. (4). These intervals are sharp over a wide range of control
parameters, which means that they cannot be improved for those
parameter values.

ATH and ALC reduce the fluctuation range in different ways for
the considered Ricker map. On the one hand, ALC asymptotically
provides, for almost all control intensities, a lower limit for the
population size that is clearly higher than the one observed for the
Fig. 3. (a) Bifurcation diagram for ATH. Red dots represent population sizes for the system
by Eq. (4). (b) Bifurcation diagram for ALC with blue dots representing asymptotic popula
behavior for c41 and consider the correct underlying equation atþ1 ¼maxff ðat Þ; c � atg
limits of the fluctuation range for the uncontrolled system. The diagrams are based on th
The initial population size is chosen as a pseudorandom number in ð0; f ðdÞ�. The diagram
of the references to color in this figure caption, the reader is referred to the web versio
uncontrolled system. The upper limit is significatively reduced for
high intensities only, see Fig. 3b. On the other hand, ATH reduces
the upper limit in comparison to the uncontrolled system over a
wide range of control intensities, see Fig. 3a. The lower limit,
however, increases significantly only for high control intensities.

Fig. 3a also shows the case when the control intensity c is
greater than unity. This corresponds to harvesting a population
that has decreased below rather than increased above a fraction of
its previous size. Such a choice of control leads to extinction. The
reason is that the harvesting always forces the population size to a
fraction 1=co1; as a consequence, there is no positive fixed point.
Choosing a control intensity c41 for ALC leads the population to
blow up (Fig. 3b). This is because the control forces the number of
individuals to increase in each generation to at least the propor-
tion c41 of its previous value.

Finally, we point out that we do not include the special case
c¼1 in our analysis. In this case, the asymptotic behavior depends
on the initial condition for both ATH and ALC, since there is a
continuum of nontrivial equilibria—namely any population size
greater than or equal to K, for ALC, or any population size less than
or equal to K, for ATH. This has not been reported before.
3.2. Fluctuation index

In Fig. 3, we have seen that constancy stability measured in
terms of the fluctuation range is always enhanced when ATH (or
ALC) is applied to the Ricker model considered in this paper.
Looking at another measure of constancy stability, namely the
fluctuation index (FI), we will show that ATH does not always have
a stabilizing effect.

The fluctuation index is a dimensionless measure of the aver-
age one-step variation of the population size scaled by the average
population size in a certain period. It was introduced in Dey and
Joshi (2006), and employed by Sah et al. (2013) and Franco and
Hilker (2013) to study stability properties of ALC.

Mathematically, the FI is given by

FI¼ 1
Ta

XT�1

t ¼ 0

atþ1�at
�� ��; ð5Þ
(3) controlled by ATH. The bold black curves mark the limits of the intervals given
tion sizes. This diagram is analogous to Sah et al. (2013), except that we include the
, cf. Franco and Hilker (2013). In both panels, the horizontal dashed lines mark the
e Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with r¼3 and K¼60, after removing transients.
s do not include the behavior at c¼1, cf. the main text for details. (For interpretation
n of this paper.)



Fig. 4. Fluctuation indices (FIs) for the system controlled by ATH (red squares) and
the system controlled by ALC (blue dots). The horizontal line marks the FI for the
uncontrolled population. The dynamics of the uncontrolled population is described
by the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with r¼3 and K¼60. The initial popu-
lation size is chosen as a pseudorandom number in ð0; f ðdÞ�, and the FI is obtained
over 1000 generations after removing transients. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)
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Fig. 5. Mean yield per generation obtained by adaptive threshold harvesting. The
dashed curve represents the asymptotic yield after discarding transients, and the
solid curve represents the short-term yield including transients. Both yield values
are averaged over 50 generations and over 1000 replicates with different initial
conditions. The dynamics of the uncontrolled population are described by the
Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with r¼3 and K¼60. The initial population size
is chosen as a pseudorandom number in ð0; f ðdÞ� for the transient yield, and in the
trapping region Ia for the asymptotic yield.
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where a is the mean population size over a period of T time steps.
Fig. 4 shows that for small values of the control parameter, the

FI of the system controlled by ATH can be greater than the FI of the
uncontrolled system. The same holds true for ALC (Sah et al.,
2013). For small values of the control intensity, the FI behaves
quite erratically for both ATH and ALC, with pronounced peaks as
well as sporadic drops below the baseline level set by the
uncontrolled system. These sudden changes are due to attractor
transitions, e.g. from chaos to periodic oscillations or between
cycles of different periods (cf. Fig. 3).

For medium and high control intensities both ATH and ALC
reduce the FI compared to the uncontrolled system. With a fixed
value of the control intensity in this range, the effects of ATH and
ALC on the FI are not only qualitatively but also quantitatively
similar.
4. Yield

Control strategies usually come at a price. Previous papers
measure this cost in terms of the “effort”, i.e. the number of
individuals added to or removed from a population (Hilker and
Westerhoff, 2005; Dattani et al., 2011; Sah et al., 2013; Franco and
Hilker, 2013; Tung et al., 2014). Here, we take a slightly different
viewpoint and interpret the number of individuals removed as the
yield. This seems to suggest itself since ATH is a harvesting
method, provided that the population controlled is of some value.
If the population is a pest, however, the term effort may be more
fitting. In any case, we will consider two different ways of calcu-
lating the yield; one is based on the long-term dynamics and
ignores transient effects (asymptotic yield), while the other is
based on the short-term dynamics only and thus takes into
account transients (transient yield). The reason for considering
two measures of the yield is the following. For ALC, on the one
hand, the asymptotic effort has been shown to decrease to zero if
the control intensity approaches its maximum value (Sah et al.,
2013). On the other hand, including transients can radically alter
this observation and make the effort increase drastically (Franco
and Hilker, 2013).
Fig. 5 shows the mean asymptotic yield per generation as a
function of the ATH intensity. The curve has a hump-shaped form,
reaching a maximum at some intermediate value of the control
intensity. For too small control intensities, the yield is zero but
then increases with c until the maximum is reached. For large
control intensities beyond the maximum, the yield declines to zero
as c-1.

Fig. 5 also shows the mean transient yield per generation,
which is similar to the asymptotic yield for small and intermediate
control intensities and reaches a local maximum, which is the
same as for the asymptotic yield (Fig. 5). For large control inten-
sities (c40:85), however, the transient yield increases steeply,
blowing up as c-1.

The reason for this sharp increase in the yield are prolonged
transients of the population dynamics if the control intensity is
large. This has the effect that the population is repeatedly har-
vested—and, as a matter of fact, to a large degree. This not only
increases the yield, but also extends the time it takes the system to
reach the trapping region. The following section considers this in
more detail.
5. Short-term behavior

In the previous section, we have seen that, in the short term,
the mean yield per generation can differ greatly from the one in
the long term. In certain circumstances, there is a long transient
period before the population reaches its asymptotic behavior.
During this transient, the short-term dynamics can be markedly
different from the long-term dynamics with the desired properties
(e.g., the mean yield or population size). Here, we show that ATH
induces prolonged transient periods for rather large values of the
control parameter. In the second part of this section, we propose
an adjustment to the control rules that suppress prolonged tran-
sients and accelerate the controlled population to reach its long-
term dynamics.

5.1. Transients in the controlled system

In order to quantify transients, we consider a value tmax that
represents the maximum number of generations needed for the
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Fig. 6. (a) Maximum transients for ATH in solid red curve and for ALC in dashed blue curve. (b) Maximum transients for the adjusted version of ATH given by Eq. (6) in solid
red curve and for the adjusted version of ALC given by Eq. (7) in dashed blue curve. The value tmax represents the maximum transient among all orbits with integer initial
population size in the interval ð0; f ðdÞ�. The dynamics of the uncontrolled population are described by the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with K¼60 and r¼3. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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population size to enter the trapping region, measured over all
possible integer initial conditions in the interval ð0; f ðdÞ�. By taking
the maximum, we take into account that transients depend on the
initial condition, and we consider the ‘worst case’, i.e. the longest
time it takes to reach the trapping region.

Fig. 6a shows that the maximum transient increases with the
control intensity for both ATH and ALC. This increase is such that
the maximum transients blow up near the maximum value of the
control intensity, c¼1. For medium and high control intensities
ATH exhibits a longer maximum transient than ALC.

Example 1. For the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with K¼60
and r¼3 the maximum transient tmax for ALC with intensity
c¼0.95 is 31 generations, whereas the corresponding value for
ATH with the same intensity rises up to 134 generations.

Analyzing the causes of this behavior can help us to devise
techniques for the cancellation of transients induced by ATH.
Numerical simulations show that the maximum transients for ATH
correspond to the largest values of the initial population size, a0.
The reason is that, due to the overcompensation in the population
dynamics, the value a1 ¼ f ða0Þ is very small for large values of a0
(see Fig. 2); the population size must then increase until entering
the trapping region. However, the control slows down the popu-
lation growth. In fact, for a sufficiently large value of a0, we have
a1oAT . That is, harvesting control will be triggered in the next and
successive generations during this transient period. In summary,
the prolonged transients are due to repeated high-intensity har-
vesting of small population sizes. Since small population sizes can
have a large production, the repeated high-intensity harvesting is
also the reason why the transient yield increases sharply for large
control intensities (cf. Fig. 5).

5.2. How to reduce transients

As the transient dynamics may last for a long time, an impor-
tant question from the practical point of view is whether the
system can be manipulated to reach its long-term behavior faster.
One of the simplest solutions is probably to apply a perturbation
such that the population size directly enters the trapping region.
However, depending on the current population size, this requires
that both restocking and culling can be implemented promptly
and to a possibly large extent. Here we consider the situation that
restocking is impossible (or very costly), so that, corresponding to
ATH, culling is the only possibility. We will propose an adjusted
ATH method that cancels the prolonged transients without chan-
ging the asymptotic dynamics.

In the first part of this section, we have seen that the long
transients are caused by repeated harvesting at small population
sizes. The higher the control intensity, the more the population
growth is slowed down and the longer it takes the population size
to reach the trapping region. This effect can be avoided by the
following two considerations.

1. We could stop harvesting small populations, say when the
population size is below the trapping region. The lower limit of
the trapping region is l(c), but since the activation threshold AT

is always inside the trapping region, it would be actually suffi-
cient to stop harvesting when the population size is smaller
than c � lðcÞo lðcÞ. For any at4c � lðcÞ, the population size in the
next generation is atþ1 ¼ at=c4 lðcÞ.

2. However, a complete cessation of the harvesting might cause
the population size to “jump” from one side of the trapping
region to the other without entering it. Therefore, instead of
completely canceling the harvesting of the small population
sizes identified, we allow control but only to such a degree that
the population size is not reduced below the trapping region.

All this leads to an adjusted ATH strategy with restricted harvesting at
small population sizes, described by the following equation:

atþ1 ¼
minff ðatÞ; at=cg; at4c � lðcÞ; ðoriginal ATH of large enough popns Þ
minff ðatÞ; lðcÞg; atrc � lðcÞ: ðrestricted harvesting of small popns Þ

(

ð6Þ
This adjustment does not alter the asymptotic behavior of the

controlled population because harvesting is only restricted when
the population size is below the trapping region. Once it enters
this region, the control follows the original ATH. We illustrate the
improvement due to the adjustment (6) in Fig. 6b, which shows a
significant reduction in maximum transients.

Example 2. The maximum transient in the system from Example 1
controlled by ATH with intensity c¼0.97 lasts for 134 generations.
With the adjustment given by (6), this transient decreases to only
4 generations.

The same kind of adjustment can be used to cancel prolonged
transients generated by ALC. In that case, the restocking action of
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the control lengthens transients when the population size is above
the trapping region. For at4uðcÞ, where u(c) denotes the upper
limit of this region, the transient lasts until the population size
decreases and enters the trapping region. Since the activation
threshold is always inside the trapping region, restocking takes
place in every generation of this stage, thus slowing down the
decrease of the population size. The higher the control intensity,
the more the population is restocked and the longer it takes for
the population to decrease to the trapping region. As before, if the
restocking control for population sizes above the trapping region
were completely stopped, the population size could jump from
one side of the trapping region to the other without entering it.
The proper adjustment is therefore to restrict restocking to the
upper limit u(c). This leads to an adjusted version of ALC with
restricted restocking at large population sizes described by the
system

atþ1 ¼
maxff ðatÞ; c � atg; atoc � uðcÞ; ðoriginal ALC of small enough popns Þ
maxff ðatÞ;uðcÞg; atZc � uðcÞ: ðrestricted restocking of large popns Þ

(

ð7Þ
As for ATH, this adjustment does not alter the asymptotic behavior
of the controlled population because the restocking is only
reduced when the population size is above the trapping region.
Once the system is in the trapping region, the control follows the
original ALC scheme.

Example 3. We consider the same uncontrolled population as in
Examples 1 and 2. Applying ALC with restocking intensity c¼0.97 and
for initial conditions a0 that are integer values in ð0; f ðdÞ�, the max-
imum transient lasts 31 generations. With the adjustment given by (7),
the maximum transient decreases to only 4 generations.
6. Model extensions

So far, we have seen how ATH can reduce erratic fluctuations in
the population size for generic models with overcompensation. In
this section, we extend the models to include different forms of
noise, an Allee effect, and the lattice effect, i.e. integerization of
population sizes. We will focus on the impact of these factors on
the constancy stability promoted by ATH.

One way to include all three model extensions is a stochastic
discrete-state difference equation of the form

atþ1 ¼min f ðatÞIðatÞ exp σεt�
σ2

2

� �� �
; ⌈at=c⌉

� �
; ð8Þ

where f(a) is the production function and the minimum-operator
models ATH with intensity c as before. There are three modifica-
tions. First, the factor I(a) brings in positive density dependence to
model a strong Allee effect. Here we assume IðaÞ ¼ sa=ð1þsaÞ,
which represents the probability of finding a mate, with s40
measuring an individual's searching efficiency (Schreiber, 2003).
Second, the flooring function ⌊ac maps a number to the greatest
integer smaller than or equal to a, whereas the ceiling function ⌈a⌉
maps a number to the smallest integer greater than or equal to a.
This integerization takes into account that individuals always
come and are harvested in whole numbers. Third, we include noise
in the form of environmental stochasticity, where εt is a normally
distributed variable with expectation 0 and variance 1, and σ is a
parameter measuring the noise intensity.

The bifurcation diagram in Fig. 7a shows that ATH reduces the
fluctuations in population size in a similar way like the determi-
nistic, continuous-state model without Allee effect. Apart from the
noisy appearance, the major difference is that too small popula-
tions go extinct. The fluctuation index is shown in Fig. 7b for dif-
ferent intensities of environmental stochasticities and different
strengths of Allee effects. ATH is effective in reducing the fluc-
tuation indices for the extended model over a similar range of
control parameters as for the model without the extensions.
Interestingly, it appears that control is less counterproductive at
small values of c.

Another major source of noise in ecological systems is demo-
graphic stochasticity. This can be modeled in the following way
(Brännström and Sumpter, 2006, cf.):

atþ1 ¼min f ðatÞIðatÞ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2

f ðatÞIðatÞ

s
εt�

σ2

2f ðatÞIðatÞ

( )$ %
; ⌈at=c⌉

( )
;

ð9Þ
where all the variables have the same meaning as before. The
results in terms of population fluctuations and fluctuation indices
(Fig. 7c and d, respectively) are similar to the model with envir-
onmental stochasticity.

To summarize, the stabilizing effect of ATH seems to be robust
against the lattice effect, Allee effect and both environmental and
demographic noise, even if their intensity is high. Even though one
might expect that noise increases fluctuations, the fluctuation
index in the stochastic model with Allee and lattice effect is
smaller than in the deterministic baseline model for some values
of the control parameter. In this sense, the model extensions seem
beneficial for stabilization.

For comparison, ALC has been shown to be robust against the
lattice effect and noise as well (Sah et al., 2013). Allee effects were
not considered, and noise was modeled in form of uniformly dis-
tributed random numbers added to the model parameter. How-
ever, if the threshold value is measured before intervention (ALCb),
noise and the lattice effect can produce counterproductive effects
of control that are related to multiple attractors (Franco and Hilker,
2014).
7. Discussion and conclusions

The original version of adaptive limiter control (ALC) as pro-
posed by Sah et al. (2013) is based on restocking the population as
control intervention. In this paper, we have shown that adaptive
threshold harvesting (ATH), i.e. the harvesting version of adaptive
limiter control (h-ALC), can also stabilize fluctuating population
sizes. This extends the applicability of adaptive limiters to situa-
tions when culling is the only possible form of intervention.
Moreover, adaptive limiters may also be used as a harvesting
strategy, thus widening the approach of threshold harvesting.

7.1. Commonalities between ATH and ALC

ATH and ALC have the following properties in common. We
begin by considering stabilization aspects. First, both control
strategies confine the population size in an interval around the
unstable fixed point of carrying capacity. This guarantees that
population size fluctuations are bounded and means that booms
and busts of a population become restricted. We provide analytical
expressions for the lower and upper bounds, which correspond to
minimum and maximum population sizes during the oscillations.
We prove that, for sufficiently large control intensity, the range of
population size fluctuation reduces with increased control inten-
sity, meaning that the control strategy is effective with respect to
reducing the extent of population cycle amplitudes. Hence, con-
stancy stability tends to improve.

Second, the fluctuation index also becomes smaller with
increased control intensity, provided the control is at least of
intermediate strength. Hence, constancy stability improves. How-
ever, for smaller control intensities both ATH and ALC may
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increase the fluctuation index compared to the uncontrolled
population. Third, the carrying capacity itself does not become
stabilized. It is only the fluctuation in population size, as measured
by the fluctuation index or the range of possible population sizes
from the peak to the trough, that reduces in magnitude or
amplitude. Yet, for the Ricker model studied in this paper, the
mean population size is, asymptotically, remarkably constant at
the level of the carrying capacity, for all values of the control
parameter 0oco1.

Hence, the stabilization properties of ATH are analogous to the
ones of ALC (previously investigated in Sah et al., 2013; Franco and
Hilker, 2013). This is not a straight-forward result; as pointed out
in the introduction, there are other control strategies which can
greatly differ in the behavior they trigger, depending on whether
interventions either add or remove individuals.

Moreover, the length of transients and the yield (or effort,
respectively) behave similarly as a function of the control intensity
for ATH and ALC (for the latter, again, this has been previously
investigated in Sah et al., 2013; Franco and Hilker, 2013).
Fig. 7. Stabilization of population size fluctuations achieved by ATH in integerized stoch
based on Eq. (8). Bottom row: demographic stochasticity, based on Eq. (9). The left colum
strength s¼0.15 after removing transients. Initial population sizes are pseudorandom n
shows the fluctuation index as a function of the control parameter. The FI has been com
replicates. The production function is the Ricker model with r¼3 and K¼60.
7.2. Differences between ATH and ALC

While both ATH and ALC reduce the fluctuation range for the
Ricker model studied in this paper, they affect the lower and upper
bounds of population size fluctuation in different ways. This
means that the peaks and troughs possible during populations
fluctuations respond differently to a control strategy that is
implemented more intensively. For intermediate control inten-
sities (cA ½0:4;0:7�), ATH tends to reduce the upper bound in a
more pronounced way, whereas ALC tends to increase the lower
bound more markedly (see Fig. 3). Hence, ATH appears more
effective in avoiding outbreaks and ALC in preventing extinctions.
For large control intensities (cAð0:7;1Þ), however, both control
methods seem equally effective in assuring minimum and max-
imum population sizes. We ought to mention that population size
is here measured after control. If the population were censused
before control, the interventions could affect the fluctuation range
and fluctuation index differently, as shown in Franco and Hilker
(2013, 2014) for ALC.

There are other differences between ATH and ALC. They occur
when the control intensities exceed values of unity. Note that this
parameter range has not been considered before for ALC. Basically,
astic models including a strong Allee effect. Top row: environmental stochasticity,
n shows asymptotic bifurcation diagrams for noise intensity σ ¼ 0:05 and Allee effect
umbers in ð0;5M=2�, where M denotes the maximum of f ðxÞIðxÞ. The right column
puted over 100 iterations (after rejecting 900 transients) and is averaged over 100
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c41 means restocking the population to levels larger than before
a crash (ALC) and harvesting the population to a level smaller than
before the increase in population size (ATH). As such, these are
neither unrealistic parameter regimes nor senseless strategies.
However, we find that these high control intensities drive the
population extinct (ATH) or lead to unbounded population growth
(ALC). Neither of which seems a desirable goal for the strategy
considered.

We point out that the dynamics inside the trapping region are
not theoretically analyzed in this study. Such an analysis seems an
interesting line of research for which mathematical tools from
Ergodic Theory could be useful.

7.3. Comparison with threshold harvesting

In contrast to adaptive limiters, threshold harvesting can
actually stabilize the population dynamics to a stable equilibrium
for sufficiently large control values (Glass and Zeng, 1994; Sinha,
1994). However, this comes at the cost of applying the interven-
tion in every generation.

The other major difference is that, by definition, threshold
harvesting affects only large population sizes. The long-term mean
yield per generation tends to be a multimodal function of the
threshold (cf. Fig. 3.9c in Hilker and Westerhoff, 2005). ATH, by
contrast, is a harvesting policy that by its design is relevant also for
populations with smaller sizes, provided they have grown suffi-
ciently in comparison to the previous census. Interestingly, ATH
shows a unimodal pattern in the long-term mean yield per gen-
eration (Fig. 5).

7.4. Yields and transients

While the primary goal of ATH is the stabilization of the fluc-
tuations, it may also be applied as a harvesting strategy when the
aim is to gain economic benefit from the exploited population.
ATH may therefore represent an alternative to other harvesting
strategies such as constant-effort, constant-yield, or threshold
harvesting.

It turns out that we have to distinguish two situations, namely
the long-term (asymptotic) and the short-term (transient) yield.
Interestingly, the short-term yield gained by ATH rises sharply for
values of high control intensities. That is, the yield becomes largest
just before the population goes extinct for c41. The transition
from a sustained population (with improved constancy stability
and large yield) to extinction happens abruptly. In contrast to
overexploitation with constant-effort harvesting, the collapse of
the population does not take place gradually.

Trying to maximize the short-term gain is therefore risky in
terms of sustainability. This bears some analogy to the observation
that focusing on short-term gains can lead to dramatic con-
sequences. One of the most prominent examples is probably the
collapse of the cod stocks off of Newfoundland. Harvesting theory
has therefore developed strategies for a sustainable catch, which
can be considered as one of the cornerstones of mathematical
bioeconomics (Clark, 1990). In fisheries, particular attention is paid
to the maximum sustainable yield (MSY). Even though there are
many concerns regarding the concept of MSY (e.g. Larkin, 1977;
Ludwig et al., 1993), it remains a “key paradigm in fisheries
management” (Maunder, 2008, p. 2295).

As a consequence, the harvesting literature has focused almost
exclusively on long-term behavior and asymptotic yields. This is in
contrast to the realization that harvesting represents additional
perturbations to the population, and that the population rarely
reaches its equilibrium state (Fox and Gurevitch, 2000). While
transient dynamics are well-known to be important (Hastings,
2004), there is little work that aims to optimize harvest taking into
account transient regimes (Jensen, 1996; Hauser et al., 2006;
Koons et al., 2006, 2007). In stochastic population models, where
population extinction is inevitable in the long run, Lande et al.
(2003, p. 122) addressed this by considering the “expected
cumulative yield over all time before eventual extinction of the
population or reduction to a specific size”. However, the time to
stochastic population extinction may be quite long.

In this paper, we have shown that the yield can be markedly
different, depending on whether we consider a short or long time
scale. The dramatic increase in the short-term yield for large
control intensities can be readily explained by the time it takes the
population to reach the trapping region. During this time, the
population is always harvested; the intervention frequency
approaches 1 (not shown). That is, during this time the population
effectively follows atþ1 ¼ at=c with c close to one, which corre-
sponds to geometric growth with a rather slow per-capita pro-
duction. Hence, due to the high yield from harvesting the popu-
lation growth is significantly reduced and almost stopped.

Here, we have calculated the transient yield over a time hor-
izon of 50 generations. This is arbitrary and could be varied.

7.5. Dealing with transients

The long transients that occur for high control intensities may
appear quite desirable on the one hand because they increment
the transient yield and simultaneously reduce the asymptotic
fluctuation range. On the other hand, however, the prolonged
transient period keeps the population size at low levels and pre-
vents it from reaching the trapping region. In many practical
situations, e.g. when it comes to supporting endangered species, it
is imperative to reduce the transients.

A major drawback of adaptive limiters is that they trigger
control actions whenever the population size exceeds (or falls
below) a proportion of its magnitude in the preceding generation
—regardless of whether this magnitude is close to zero (or on a
high level, respectively). This can happen when the control
intensity in both ATH and ALC is large. Yet, it does not seem to
make sense to harvest a population that has increased in size
when this size is still small and far below the trapping region.
Similarly, for ALC, it seems unreasonable to restock a population
that has declined but is still above the trapping region.

Based on this observation, we propose adjustments to both
ATH and ALC that suppress prolonged transients, while retaining
the asymptotic behavior. These adjustments concern only popu-
lation sizes outside the trapping region and are such that the
population size in the next generation does not ‘overshoot’ or
‘undershoot’ the trapping region. This is achieved by restricting
the harvesting or restocking intervention for ATH and ALC,
respectively. If the population size is within the trapping region,
there is no need to alter the original control schemes because the
population does not leave the trapping region. The adjustments
work well (Fig. 6a, Examples 2 and 3) and are therefore effective in
speeding up the transition from a transient period to the asymp-
totic regime.

As mentioned previously, transients are rarely taken into
account or studied (but see Labra et al., 2003; Caswell, 2007; Ellis,
2013; Franco and Hilker, 2013; Franco and Ruiz-Herrera, 2015),
even though they are ubiquitous in nature and may be actually
more important than long-term dynamics (e.g. Hastings, 2004).
The problem of directing an unstable or perturbed population in
an efficient way to a desired state, such as the equilibrium, bears
some analogy to the idea of targeting in chaos control (Kostelich,
1999; Hilker and Westerhoff, 2007b). In the ecological literature,
we could not find many studies that investigate how to deal with
transients. Harley and Manson (1981) suggested an “intermediate
harvesting policy” for the transient period that accelerated the
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transition to the equilibrium state of a structured population.
Another, yet completely different approach is based on utilizing
available time series; learning from ‘trajectories from the past’ one
could steer the system to a desired state efficiently (Hilker and
Westerhoff, 2007a,b).

This time-series-based approach has the advantage of not
requiring any knowledge of the underlying laws of dynamics. As
pointed out by Sah et al. (2013) for ALC, one of the main advan-
tages of adaptive limiters over other strategies for controlling
biological populations is that they can be implemented even when
a good estimation of the population production map f for the
uncontrolled system is not available. In this situation, the lack of
knowledge about the system behavior makes it very difficult to
reduce the length of transients. The adjusted methods presented
here do require information on the upper or lower bounds of the
trapping region.

Control strategies that are aimed at biological populations and
that efficiently dealt with transient while requiring little infor-
mation seem therefore an interesting research endeavor.
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Appendix A. Proofs of the analytical results

Throughout this appendix, f t refers to the tth iterate of f, i.e.,
f t ¼ f○f t�1.

Proposition 1. Assume that (C1)–(C3) hold. For control intensities
c4 infxA ð0;bÞ x=f ðxÞ the set

W ¼ xAð0; b� : f ðxÞ ¼ x=c
� 	

is nonempty and has a maximum AT oK . If cr infxA ð0;bÞ x=f ðxÞ the
action of ATH is never triggered.

Proof. Consider the functions gðxÞ ¼ x=f ðxÞ and hðxÞ ¼ f ðxÞ�x=c. By
(C2) we have gðxÞo1 in ð0;KÞ and gðxÞZ1 in ½K ; bÞ, therefore the
infimum of g can only correspond to its image at a point in ð0;KÞ
(in that case, a minimum) or to its one-side limit on the right of 0.
Assume that there exists zAð0;KÞ such that infxA ð0;bÞ gðxÞ ¼
gðzÞ ¼ z=f ðzÞ. Then, c4z=f ðzÞ and therefore hðzÞ ¼ f ðzÞ�z=c40. On
the other hand, f ðKÞ ¼ KoK=c, and then hðKÞ ¼ f ðKÞ�K=co0.
According to Bolzano's Theorem, there must exist a point ~x40
with hð ~xÞ ¼ 0, and hence ~xAW . Now we consider the case for
which infxA ð0;bÞ gðxÞ ¼ limx-0þ gðxÞ. Since f ð0Þ ¼ 0, the condition
for the control parameter can be restated as

1
c
o lim

x-0þ

1
gðxÞ ¼ lim

x-0þ

f ðxÞ� f ð0Þ
x

¼ f 0ð0þ Þ:

By the linear approximation of f at x¼0 there exists a neighbor-
hood U �Rþ with f ðxÞ � f 0ð0þ Þ � x4x=c for all xAU. Therefore,
hðxÞ ¼ f ðxÞ�x=c40 for all xAU, and applying the same argument
as before we can conclude that there must exist a point ~x40 with
hð ~xÞ ¼ 0, and hence ~xAW . This completes the proof that W is
nonempty for the considered control intensities.

Since f is strictly decreasing for x4d and f ðKÞ ¼ K , we have that
W � ð0;KÞ. Moreover, the set h�1ðf0gÞ � ½0; b� is closed, and there-
fore W ¼ h�1ðf0gÞ \ ð0; b�a∅ has a maximum AT oK .

Finally, for cr infxA ð0;bÞ x=f ðxÞ it is f ðxÞrx=c for all xA ½0; b� and
therefore minff ðxÞ; x=cg ¼ f ðxÞ. This means that the action of ATH is
never triggered for these intensities.□
Corollary 1. Assume that (C1)–(C3) hold and cAð0;1Þ is such that
the activation threshold AT exists. Then the map describing the
dynamics of at for the controlled system under ATH with intensity c,

HðxÞ ¼minff ðxÞ; x=cg; ðA:1Þ
verifies HðxÞ ¼ f ðxÞ for all xZAT and xrHðxÞrx=c for xrAT .

Proof. Since AT is the highest intersection point between f and the
straight line y¼x/c, the inequality f ðxÞrx=c must hold for all
xZAT . Hence, HðxÞ ¼minff ðxÞ; x=cg ¼ f ðxÞ for these points. It is
clear that HðxÞ ¼minff ðxÞ; x=cgrx=c. Since AT oK and f ðxÞ4x for
all xoK , then f ðxÞ4x for all xrAT oK . Given that co1 it is x=c
Zx for all xZ0, and hence HðxÞ ¼minff ðxÞ; x=cgZx for all xrAT .□

Corollary 2. Assume that (C1)–(C3) hold and cAð0;1Þ is such that
the activation threshold AT exists. Then ATH does not act in generation
t if at�14AT .

Proposition 2. Assume that (C1)–(C3) hold and that the fixed point
K is unstable for the uncontrolled system (1). Then, independent of
the magnitude of ATH, cAð0;1Þ, the controlled system has no
asymptotically stable equilibria.

Proof. For cr infxA ð0;bÞ x=f ðxÞ the control by ATH is never trig-
gered and the dynamics of the uncontrolled and controlled sys-
tems are the same. By condition (C2), this system has only two
fixed points x¼0 and x¼K. Since f ðxÞ4x for 0oxoK , x¼0 is an
unstable equilibrium. Under the assumption that K is also
unstable, we conclude that the “controlled” system has no
asymptotically stable equilibria.

For control intensities c4 infxA ð0;bÞ x=f ðxÞ the dynamics of the
controlled system by ATH are different from the ones for the
uncontrolled system and are strictly given by (A.1). Looking at this
map, it becomes clear that x¼0 is a fixed point. Since co1, we
have that fixed points with x40 must verify x¼ f ðxÞ, and thus
x¼K. Hence, the system controlled by ATH with intensity c4
infxA ð0;bÞ x=f ðxÞ has only two fixed points, namely 0 and K. We are
going to prove that none of them is asymptotically stable. Consider
the neighborhood U ¼ ð0;AT Þ of 0. We are going to prove that all
orbits starting in U eventually leave it. Assume atAU for all tZ0.
By Corollary 1 it is HðxÞ4x for xAð0;AT Þ, which means atþ14at .
Hence, the sequence ðatÞtAN is increasing and upper bounded, so it
converges to some point x⋆Að0;AT �. This point is a fixed point of
the system, which is absurd because there is no fixed point in the
interval ð0;AT � � ð0;KÞ. Hence, we conclude that 0 is an unstable
fixed point.

Let us now prove that K is also unstable. As f is continuous and
f ðKÞ ¼ KoK=c, there exists a neighborhood V of K such that f ðxÞ
ox=c for all xAV . Assume atAV for all tZ0. According to (A.1) it
is atþ1 ¼ f ðatÞ for all tZ0, and thus at ¼ f tða0Þ. Since K is an
unstable fixed point for the uncontrolled system, this last equality
contradicts our hypothesis and allows us to conclude that K is an
unstable fixed point for the controlled system by ATH.

Theorem 2. Assume that (C1)–(C3) hold and cAð0;1Þ is such that
the activation threshold AT exists. Then, applying ATH with intensity c
confines the population sizes at for any a0A ð0; bÞ into an interval Ia
¼ ½lðcÞ;uðcÞ� around the positive equilibrium K, with endpoints given
by the expressions

lðcÞ ¼
f ðAT=cÞ; drAT ;

f ðf ðdÞÞ; d4AT ;

(
and uðcÞ ¼

AT=c; drAT ;

f ðdÞ; d4AT :

(

Proof. In order to cover all possible expressions for Ia, we must
consider two cases.

We start considering the case drAT , for which Ia ¼ ½f ðAT=cÞ;
AT=c�. We have that drAT oAT=c, and thus f ðdÞZ f ðAT Þ4 f ðAT=cÞ
because co1 and f is strictly decreasing in (d,b). From this, we
conclude that the interval Ia has nonempty interior because f ðAT Þ
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¼ AT=c and therefore AT=c4 f ðAT=cÞ. To prove that orbits enter Ia
after an initial transient, we consider exhaustive and disjoint cases
depending on the initial population size a0Að0; bÞ.
1. Firstly, we assume that a0A ½AT ;AT=c�. In this case,

drAT ra0rAT=c;

and thanks to the strict decrease of f on (d,b) we conclude that

f ðdÞZ f ðAT ÞZ f ða0ÞZ f ðAT=cÞ:
On the other hand, according to Corollary 1, it is
a1 ¼Hða0Þ ¼ f ða0Þ. With this, given that f ðAT Þ ¼ AT=c, we have
that AT=cZa1Z f ðAT=cÞ and thus a1A Ia.

2. Next, we assume a0A ð0;AT Þ. We are going to show that there
exists t0AN such that at0 A ½AT ;AT=c�. Assume at =2½AT ;AT=c� for
all t. Let us prove by induction on t that atA ð0;AT Þ for all t. For
t¼0 this condition is straightforward from the hypothesis of the
case. Suppose atAð0;AT Þ for certain tZ1. Since atoAT , we have
that atþ1 ¼HðatÞrat=c by Corollary 1, and therefore

atþ1rat=coAT=c:

As atþ1 =2½AT ;AT=c� by hypothesis, we conclude that atþ1A
ð0;AT Þ. In conclusion, atAð0;AT Þ for all t. By Corollary 1 it is atþ1

¼HðatÞ4at for all t, and hence the sequence ðatÞtAN is increas-
ing and upper bounded by AT, so it converges to some point
x⋆Að0;AT �. This point must be a fixed point for the system, what
is absurd because there is no fixed point in the interval
ð0;AT � � ð0;KÞ. In summary, we conclude that there exists t0A
N such that at0 A ½AT ;AT=c� and thus at0 þ1A Ia by the first
subcase.

3. Finally, we assume a0AðAT=c; bÞ. We have that x04AT=c4AT Z
d and according to Corollary 1, a1 ¼Hða0Þ ¼ f ða0Þ. From the strict
decrease of f on (d,b) we conclude that

a1 ¼ f ða0Þo f ðAT=cÞo f ðAT Þ ¼ AT=c;

what leads to one of the previous subcases and proves that
orbits eventually enter Ia.

So far, we have proved that orbits enter the trapping region after a
finite number of generations. To prove that they never leave it, we
must see that atþ1A Ia for atA Ia. Assume atA Ia for certain t. If
f ðAT=cÞZAT we have that AT r f ðAT=cÞratrAT=c, and therefore
atþ1A Ia by the previous subcase 1. For f ðAT=cÞoAT we consider
two cases. If atoAT it is atoatþ1 ¼HðatÞoat=c (Corollary 1) and
thus AT=c4at=c4atþ14atZ f ðAT=cÞ, what implies atþ1A Ia. If at
ZAT it is atA ½AT ;AT=c�, and therefore atþ1A Ia by the previous
subcase 1.

We consider now the case d4AT , for which Ia ¼ ½f 2ðdÞ; f ðdÞ�. If
f 2ðdÞ ¼ f ðdÞ then f ðdÞ4K is a fixed point for f, in contradiction with
condition (C2). Hence, Ia has nonempty interior and we can pro-
ceed to prove that orbits enter this interval after a finite number of
generations. To do this, we must distinguish some cases as before.
1. Firstly, we assume that a0A ½d; f ðdÞ�. As a0Zd4AT , it is a1 ¼H

ða0Þ ¼ f ða0Þ by Corollary 1. Given that f is strictly decreasing on
(d,b), from the inequality dra0r f ðdÞ we deduce that
f 2ðdÞr f ða0Þ ¼ a1r f ðdÞ, what implies a1A Ia.

2. Next, we assume a0A ð0; dÞ. We are going to see that there exists
t0AN such that at0 A ½d; f ðdÞ�. Suppose at =2½d; f ðdÞ� for all t. Given
that f reaches its absolute maximum at x¼d, for all xA ½0; b� we
have that HðxÞ ¼minff ðxÞ; x=cgr f ðxÞr f ðdÞ. Hence, at ¼Hðat�1Þ
r f ðdÞ for all t, what together with at =2½d; f ðdÞ� leads to conclude
that atA ð0; dÞ for all t. Since f ðxÞ4x for all xA ð0; dÞ � ð0;KÞ we
have that f ðatÞ4at for all t, and given that at=c4at it is atþ1 ¼
HðatÞ ¼minff ðatÞ; at=cg4at . Hence, the sequence ðatÞtAN is
increasing and upper bounded by d, so it converges to some
point x⋆Að0;d�. This point must be a fixed point for the system,
what is absurd because there is no fixed point in the interval
ð0; d� � ð0;KÞ. We conclude that there exists t0AN such that at0
A ½d; f ðdÞ� and, with this, at0 þ1A Ia by the previous subcase.

3. Finally, we assume a0A ðf ðdÞ; bÞ. In this case we have that 0o
a1 ¼Hða0Þr f ðdÞ because HðxÞr f ðdÞ for all xA ð0; bÞ. This brings
us back to one of the previous cases and allows us to assert that
orbits eventually enter the trapping region.

Now we proceed to prove the invariance of the trapping region
under ATH. To do this, we assume atA Ia for a certain t and prove
atþ1A Ia. We have seen that atþ1 ¼HðatÞr f ðdÞ for all t, so it is
enough to prove that atþ1Z f 2ðdÞ. For atZd this condition is
straightforward from the previous subcase 1. If atod we have that
f ðatÞ4at by condition (C2), and then

atþ1 ¼HðatÞ ¼minff ðatÞ; at=cgZminfat ; at=cg ¼ atZ f 2ðdÞ:□
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