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Abstract

Adaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two related con-

trol methods that have been shown to stabilize fluctuating populations. Large variations in

population abundance can threaten the constancy and the persistence stability of ecological

populations, which may impede the success and efficiency of managing natural resources.

Here, we consider population models that include biological mechanisms characteristic for

causing extinctions on the one hand and pest outbreaks on the other hand. These models

include Allee effects and the impact of natural enemies (as is typical of forest defoliating

insects). We study the impacts of noise and different levels of biological parameters in three

extinction and two outbreak scenarios. Our results show that ALC and ATH have an effect

on extinction and outbreak risks only for sufficiently large control intensities. Moreover, there

is a clear disparity between the two control methods: in the extinction scenarios, ALC can be

effective and ATH can be counterproductive, whereas in the outbreak scenarios the situa-

tion is reversed, with ATH being effective and ALC being potentially counterproductive.

1 Introduction

Many populations fluctuate in abundance [1, 2], which may have consequences for their per-

sistence, resilience to perturbations, the attainable yield from exploiting such populations, and

which may have knock-on effects on other species and the stability of the ecosystem as a whole

[3–5]. Adaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two con-

trol strategies that aim to reduce oscillations in population size. They are related in the sense

that their interventions (restocking and harvesting, respectively) only take place if the popula-

tion size has dropped below or climbed above a certain proportion of its value in the preceding

time step, i.e., the threshold population sizes to trigger interventions are ‘adaptive’. ALC has

recently been shown to promote population stability experimentally in populations and meta-

populations of the fruit fly Drosophila melanogaster [6], in numerical simulations as well as by

analytical results [6–10]. ATH has been proposed and analyzed in [11].

Both methods have similar stabilizing properties [11], yet they can be expected to be imple-

mented in different biological contexts. As a restocking strategy, ALC is likely to be applied in

PLOS ONE | DOI:10.1371/journal.pone.0170837 February 2, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Segura J, Hilker FM, Franco D (2017)

Population control methods in stochastic extinction

and outbreak scenarios. PLoS ONE 12(2):

e0170837. doi:10.1371/journal.pone.0170837

Editor: Roberto Andre Kraenkel, São Paulo State

University, BRAZIL

Received: August 4, 2016

Accepted: January 11, 2017

Published: February 2, 2017

Copyright: © 2017 Segura et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: We acknowledge support by the Spanish

Ministerio de Economı́a y Competitividad and

FEDER, grant MTM2013-43404-P, Deutsche

Forschungsgemeinschaft (DFG) and the Open

Access Publishing Fund of Osnabrück University.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170837&domain=pdf&date_stamp=2017-02-02
http://creativecommons.org/licenses/by/4.0/


biological conservation, species re-introduction programmes and the release of biocontrol

agents, while ATH as a harvesting strategy is expected to be implemented in pest containment

programmes or in the management of species with commercial value (e.g. fisheries). However,

on the one hand harvesting strategies can have the counter-intuitive effect of increasing popu-

lation size, see the review [12]. On the other hand, adding individuals could promote extinc-

tion. For example, such an intervention can shift a bistable system to another attractor with

larger extinction risk, see e.g. [13], which may be especially the case when the alternative

attractor oscillates and the trough values come close to an extinction threshold [14–16]. It is

therefore not straightforward to assume that harvesting reduces outbreaks risk nor that

restocking reduces extinction risk.

Moreover, all of the models of ALC and ATH have made use of unimodal production

curves such as the Ricker map. In reality, control is likely to be necessary when populations are

subject to biological mechanisms that put them at risk or promote recurrent population out-

breaks. These situations are characterized by bistability such that the population can jump sto-

chastically between two attractors, one of which is less desirable than the other from a control

point of view (for nuisance species we want to avoid the high-density attractor and for endan-

gered species we want to avoid the small-density attractor or extinction state). Biological

mechanisms inducing bistability have been largely ignored, however, with the exception of

ALC models setting small populations to zero with a fixed probability [6, 9] and ATH models

considering strong Allee effects in some numerical experiments [11].

In this paper, we study ALC and ATH systematically in two different population contexts.

In the first one, populations are vulnerable to extinction due to a strong Allee effect. The Allee

effect is a positive density dependence at low population sizes that occurs when the individual

fitness increases with the number of individuals [17]. If the Allee effect is strong, there is bist-

ability and small populations go extinct due to a lack of conspecifics (which may be caused by

difficulties in finding mates or in cooperation, for instance). We will consider three different

extinction scenarios. In the first one, populations monotonically decline before going extinct.

In the second one, populations grow to a large population size and then collapse due to over-

compensation. In the third one, a strong Allee effect interacts with population cycles and

causes essential extinction [14–16]. This happens when the fluctuating population drops below

the minimum viable population size set by the Allee effect. The transition to essential extinc-

tion occurs through a boundary collision, and thus environmental changes may cause abrupt

population collapses. As ALC and ATH reduce the fluctuation range, their stabilizing proper-

ties are particularly interesting in this extinction scenario.

Allee effects have been empirically found in many species including mammals and birds

[18], plants [19], insects [20] and marine invertebrates [21], and their relevance is particularly

recognized in conservation biology [17, 22–24]. However, Allee effects have also been detected

in a large number of invasive species like the gypsy moth Lymantria dispar [25, 26], the zebra

mussel Dreissena polymorpha [27] or the pine sawyer Monochamus alternatus [28]. Thus, Allee

effects are relevant not only for the survival of endangered populations but also in the preven-

tion of outbreaks.

Outbreaks are the second population context considered in this paper. Here, we study two

different outbreak scenarios. The first one is based on a strong Allee effect model, with extinc-

tion being the non-outbreak state. In the second scenario the non-outbreak state is positive. It

is based on a gypsy moth outbreak model that combines density-dependent regulation by pre-

dation with host–pathogen dynamics [29]. This causes multistability between a high-density

and a low-density attractor, the latter of which may be more complex and even chaotic. With

stochastic perturbations ubiquitous in nature, the model population jumps rather unpredict-

ably between different states. Again, as ALC and ATH tend to reduce fluctuation ranges, they
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might abate transitions to outbreak states. The importance of stochasticity is also well recog-

nized in biological invasions [25, 30] and for endangered species [24, 31–33].

In the next Section, we introduce the mathematical models that describe first the underly-

ing population dynamics in the absence of any control and then the two control methods of

ALC and ATH. Section 3 analyzes the effect of the control methods on deterministic and sto-

chastic populations in three different extinction scenarios. We then turn our attention to the

two outbreak scenarios in Sections 4 and 5. Section 6 draws conclusion on the applicability of

ALC and ATH in the biological contexts considered.

2 Population dynamics and control methods

We start by describing the underlying population dynamics in the absence of control, to be fol-

lowed by a description of the two control methods.

2.1 Deterministic and stochastic population models

We assume that the population dynamics are described by a first-order difference equation of

the form

xtþ1 ¼ f ðxtÞ; x0 2 ½0;þ1Þ; t 2 N;

where xt denotes the population size at generation t and f: [0, +1)! [0, +1) is the popula-

tion production function or the stock–recruitment curve. We assume that the population has a

strong Allee effect and that there are three fixed points, namely the extinction state x = 0, the

Allee threshold L> 0 and an equilibrium K> 0 corresponding to the carrying capacity. More-

over, the population dynamics are assumed to be overcompensatory such that the stock–

recruitment curve is unimodal with a long tail, peaking at x = d.

These biological assumptions can be expressed mathematically in the following conditions

on the map f:

(C1). f is continuously differentiable and such that f(0) = 0, f 0(0+)> 0 and f(x)> 0 for all

x 2 (0, +1).

(C2). f has three non-negative fixed points x = 0, x = L> 0 and x = K> L, with f(x)> x for

x 2 (L, K) and f(x)< x for x 2 (0, L) [ (K, +1).

(C3). f has a unique critical point d 2 (0, K) such that f 0(x)> 0 for all x 2 (0, d) and f 0(x)< 0

for all x 2 (d, +1).

For numerical simulations, we will consider a population map satisfying (C1)–(C3) that

was studied in [14] as a model of mate limitation [22, 34, 35]. On the basis of the Ricker

model, a strong Allee effect is induced by the introduction of density dependence in the form

f ðxÞ ¼ x � exp ðrð1 � x=~KÞÞ � IðxÞ; ð1Þ

where I(x) = sx/(1 + sx) is the probability of finding a mate, s> 0 measures an individual’s

searching efficiency and r, ~K > 0 represent the growth parameter and the carrying capacity

for the Ricker model in the absence of mate limitation, respectively. This model and its dynam-

ics are described in more detail in [14] and [33]. For given values of r and ~K , condition (C2) is

satisfied only for values of s above a certain threshold, below which the population goes asymp-

totically extinct for all initial conditions.

Deterministic population models like Eq (1) ignore, in some sense, the unpredictability of

nature. In order to take into account the effect of random events on the population dynamics,

we will introduce stochasticity in the underlying model. Since Allee effects are expected to
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operate on small populations, we focus our attention on demographic stochasticity. One way

to include this is

xtþ1 ¼ f ðxtÞ � exp

ffiffiffiffiffiffiffiffiffiffiffi
s2

f ðxtÞ

s

� εt �
s2

2 f ðxtÞ

 !

; ð2Þ

which was proposed by [36]. Here, f denotes the production function of the deterministic

model, εt is a normally distributed variable with expectation 0 and variance 1, and parameter σ
measures the intensity of noise.

2.2 Modelling control by adaptive limiters

When a population is controlled by ALC, the intervention is triggered whenever the number

of individuals after reproduction, f(xt), drops below a certain fraction of its value in the cur-

rent generation, and individuals are restocked by such an amount that the population size is

restored back to that fraction. The dynamics of populations controlled by ALC can be

described by the difference equation

xtþ1 ¼ maxf f ðxtÞ; c � xtg;

where f is the production function of the uncontrolled population, and c 2 (0, 1) measures the

restocking intensity, for more details see [7].

Control by ATH is activated when the number of individuals after reproduction, f(xt), has

grown and exceeds a certain proportion (>1) of its value in the current generation. Control

can take the form of harvesting and sets back the population size to xt/h. We assume h 2 (0, 1)

such that the proportion is greater than the current population size and harvesting takes place

whenever the population has grown below that proportion. Biologically, parameter h measures

the harvesting intensity, for more details see [11]. Populations controlled by this method can

be described by the difference equation

xtþ1 ¼ minf f ðxtÞ; xt=hg:

3 Preventing extinction

We will study three different extinction scenarios related to the Allee effect. In the first one,

populations become too small, and in the second one populations become too large (as they

collapse below the Allee threshold due to overcompensation). In the third scenario, popula-

tions become too cyclic (in the sense that a boundary collision causes essential extinction).

The first two scenarios are related to bistable dynamics induced by the strong Allee effect.

The existence of bistability in a deterministic population means that there is a minimum viable

number of individuals L (the Allee threshold) below which the population goes extinct and

above which it persists for a set of initial conditions with positive Lebesgue measure. All the

results stated in this Section for deterministic populations (both controlled and uncontrolled)

are proven in the Appendix.

3.1 Small population extinction

Small deterministic populations with a size below L eventually go extinct. This is the reason

why populations with a strong Allee effect are considered particularly vulnerable to extinction.

This vulnerability can be expressed in terms of different statistics, such as the extinction proba-

bility, the first passage probability or the mean time to extinction [24]. We will use the first of

these measures to study the effect of ALC and ATH on population persistence.

Population control methods in stochastic extinction and outbreak scenarios
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Before doing so, we consider uncontrolled populations. In the deterministic case, the prob-

ability of extinction as a function of the initial population size has the shape of a staircase near

the Allee threshold L: it equals 1 on the left-hand side of L and 0 on the right-hand side of L
(Fig 1). When stochasticity is taken into account, populations of a small size can be ‘saved’

from impending extinction by random events that occasionally increase the number of indi-

viduals above L. Conversely, populations that would persist in a deterministic world can fall

below L due to the effect of noise and eventually go extinct [24]. As a result, stochasticity

reduces the abruptness of the deterministic Allee threshold [22, 24, 31], and the extinction

probability for stochastic systems has a sigmoid decreasing shape, as shown in Fig 1. This has

an important consequence. The concept of an Allee threshold, which for deterministic systems

corresponds to the smallest positive fixed point, must be redefined in the case of stochastic

populations. This will be done next.

3.1.1 Stochastic Allee threshold. There are two approaches to define the Allee threshold

in stochastic models, which we will refer to as stochastic Allee threshold. The first one defines

the Allee thresold as the population size corresponding to the inflection point of the sigmoi-

dally decreasing population extinction probability [22, 31]. The second approach defines the

Allee threshold as the population size for which the probability of extinction and the probabil-

ity of persistence are equal [24, 37]. This is also the definition we will use in this paper, as it is

practically easier to calculate.

It should be noted though that the two approaches yield different values for the Allee

threshold, which can also be seen in Fig 1. Nevertheless, when we know there is always a strong

Allee effect present, both approaches result in the same trends as the corresponding values are

positively correlated. However, if there is weak or no demographic Allee effect, there is obvi-

ously no Allee threshold in the deterministic model and using the second approach could be

misleading.

Before investigating the impact of control on the stochastic Allee thresholds, we consider

the uncontrolled case. The example in Fig 1 shows that the stochastic Allee threshold (blue

curve) is larger than the deterministic Allee threshold L. This matches the general consensus

that noise renders populations with strong Allee effect more vulnerable to extinction [17, 23,

24, 31, 33].

3.1.2 Controlling small deterministic populations. Let us now analyze the effect of ALC

and ATH on small deterministic populations. There are two questions that immediately come

to mind. Firstly, can control be beneficial in the sense of saving populations that are doomed

to extinction? Secondly, can control be counterproductive in the sense of inducing essential

extinction of those populations that might survive otherwise? Proposition 1 in the Appendix

shows that neither of these situations ever happen. In particular, neither ALC nor ATH change

the extinction probability of deterministic populations around L.

Yet, there are slight differences between the effect of the two control methods in such popu-

lations. On the one hand, ATH is completely ineffective for small populations because it does

not alter the production function around L. On the other hand, ALC does change the dynam-

ics around the extinction state from xt+1 = f(xt) to xt+1 = xt � c> f(xt) for intensities c> f 0(0+).

Thus, ALC is able to slow down the extinction process, see Fig 2.

3.1.3 Controlling small stochastic populations. When stochasticity is taken into account,

important differences between the effect of ALC and ATH on small populations emerge. ALC

with high intensities promotes population persistence by reducing both the probability of

extinction and the stochastic Allee threshold (Fig 1A). Basically, there are two reasons for this

effect. Firstly, restocking due to ALC can partially mitigate population declines that are caused

by noise and that could spur extinction. Secondly, ALC prolongs for c> f 0(0+) the transients

to the extinction state of deterministic populations that start or drop below L (cf. Fig 2). These

Population control methods in stochastic extinction and outbreak scenarios
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Fig 1. Probability of extinction of small stochastic populations. Probability of extinction in terms of the initial

population size around L for deterministic (σ = 0) and demographic stochastic (σ = 1) uncontrolled populations

and populations controlled with different intensities by ALC (A) and ATH (B). Calculations are based on Models

(1) and (2) with r = 4.5, ~K ¼ 400 and s = 0.002 (L� 6.015). For a given initial population size, the probability of

extinction has been obtained for the first 100 generations and over 1000 replicates.

doi:10.1371/journal.pone.0170837.g001
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longer transients increase the chance of stochastic populations to be positively affected by

noise and thus be saved for some time.

Under ATH, both the probability of extinction and the stochastic Allee threshold increase

with higher harvesting intensities (Fig 1B). Therefore, unlike ALC, ATH seems to be counter-

productive to protecting small population. Again, two reasons help to explain this effect.

Firstly, ATH is not able to slow down fortuitous declines in the size of populations that start or

drop below the Allee threshold. Secondly, the harvesting of ATH tends to reduce any random

growth that could move the population away from the extinction state.

3.1.4 Impact of stochasticity and Allee effects. We now investigate how the effect of con-

trol on population persistence depends on the level of noise, σ on the one hand and the

strength of the Allee effect, s on the other hand. To this end, we seek to represent the relation-

ship between extinction probability and initial population size in a single quantity. Fig 1 sug-

gests that, for given values of s and σ, the stochastic Allee threshold is positively correlated to

the probability of extinction in terms of the control intensity: those control intensities with a

higher extinction probability have a larger stochastic Allee threshold. Hence, we will capture

the effect of the control methods on the extinction probability by analyzing the stochastic Allee

threshold.

Fig 3A shows how the stochastic Allee threshold varies with different levels of noise in the

range of bistable dynamics. When the level of noise is low, control exerted by ALC or ATH

does not alter the extinction probability and, in this respect, controlled populations behave as

the uncontrolled ones. For medium and high levels of noise, differences between controlled

and uncontrolled populations arise: on the one hand, for small control intensities, neither

Fig 2. ALC can slow down the convergence to extinction of small deterministic populations. The black curve corresponds to

the production function of the uncontrolled Model (1) with r = 4.5, ~K ¼ 400 and s = 0.002, and the red curve to the population

controlled by ALC with intensity c = 0.5.

doi:10.1371/journal.pone.0170837.g002
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Fig 3. Stochastic Allee and collapse thresholds. Stochastic Allee and collapse thresholds as functions of

control intensity for different levels of noise and for different strengths of the Allee effect in the range of bistable

dynamics (A to D) and in the range of essential extinction (E to H). Calculations are based on Models (1) and (2)

with r = 4.5 and ~K ¼ 400. For a given initial population size, the probability of extinction has been obtained for the

first 100 generations and over 5000 replicates. The right-hand side panels show stochastic collapse threshold only

for ATH since they exist under ALC only for extremely small intensities.

doi:10.1371/journal.pone.0170837.g003
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ALC nor ATH alter the extinction probability; on the other hand, for medium and large con-

trol intensities, extinction probability is reduced by ALC and increased by ATH. This disparity

between control methods (i) becomes more pronounced and (ii) starts to arise at smaller con-

trol intensities as the noise level increases. These observations corroborate and extend the

results in Fig 1.

Different strengths of the Allee effect influence, of course, the quantitative level of the sto-

chastic Allee threshold (Fig 3C). However, they affect neither the magnitude of disparity

between ALC and ATH nor the minimum control intensity for which disparity between ALC

and ATH appears.

3.1.5 Summary. In deterministic systems, neither ALC nor ATH are effective in changing

the vulnerability of small populations to extinction associated to a strong Allee effect. The

same holds true in stochastic systems with low levels of noise. If the population is sufficiently

noisy, the control effect depends on the control intensity. For small control intensities, ALC

and ATH are still ineffective. For medium and large control intensities, however, there is a

clear difference between the control methods. While ALC decreases the stochastic Allee

threshold and thus promotes population persistence, ATH decreases the stochastic Allee

threshold and thus increases the risk of extinction.

3.2 Large population extinction

When a population is subject to a strong Allee effect, conservation concerns usually seem to

focus on small populations. However, in the presence of overcompensation, also large popula-

tions can be vulnerable to extinction. Under assumptions (C1)–(C3), this happens when the

limit of f for x!1 is below L (this is the case for the mate-finding Allee effect Model (1) con-

sidered here, for which that limit is 0). Under these conditions, there exists a collapse threshold
U> K such that deterministic uncontrolled populations with a number of individuals above it

go eventually extinct (see Fig 4A). By contrast, if the limit of f for x!1 is greater than L, all

populations starting in (L, +1) persist (see Fig 4B).

3.2.1 Controlling large deterministic populations. Assuming that a collapse threshold U
exists, we now analyze how the control methods affect the extinction risk of large deterministic

populations. We start by noting that ATH does not alter the production function around U.

Hence, this method has no effect on the vulnerability of large deterministic populations.

Fig 4. Large population extinction. Large populations can be driven to extinction if there is a collapse threshold U and population size

exceeds that threshold. A: The collapse threshold exists if limx!+1 f(x) < L. Then there is a U such that f(x) > L for all x 2 (L, U) and f(x) < L

for all x 2 (U, +1). B: There is no collapse threshold if limx!+1 f(x)� L, because then f(x) > L for all x > L.

doi:10.1371/journal.pone.0170837.g004
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By contrast, ALC can suppress that vulnerability. Proposition 1 shows that this happens

only partially for control intensities c< L/U, since populations with sizes in

½L=c;U=c� [ ½L=c2;U=c2� [ ½L=c3;U=c3� [ � � �

persist, while populations with sizes in

ðU; L=cÞ [ ðU=c; L=c2Þ [ ðU=c2; L=c3Þ [ � � �

asymptotically go extinct (cf. Fig 5). For intensities c> L/U, ALC excludes extinction of large

populations as all populations with sizes in [L, +1) persist.

Regarding the critical control intensity L/U, it is remarkable that its value is less than 0.15

for the mate-finding Allee effect model considered here (for all values of s for which the system

exhibits bistable dynamics and for all values of r in the interval (1, 6)). In view of this and if the

restocking intensity is greater than this value in practical implementations, one may assume

that ALC totally cancels the effect of overcompensation on population persistence for the

deterministic model.

3.2.2 Controlling large stochastic populations. Similarly to the stochastic Allee thresh-

old, we need to extend the concept of the collapse threshold to systems that include noise. To

this end, we note that, in deterministic uncontrolled systems, the extinction probability for

large population sizes around U is switch-like: it equals 0 on the left-hand side of U and 1 on

the right-hand side (not shown here). Noise can shift the number of individuals from one side

of U to the other, thus conferring a sigmoid shape to the extinction probability around that

point (not shown here). This allows us to define the stochastic collapse threshold as the popula-

tion size for which the extinction probability equals the persistence probability.

Let us first consider the effect of ALC. Populations controlled by this method have a zero

extinction probability around U (not shown here). Consequently, there is no stochastic col-

lapse threshold for these populations. This is consistent with the fact that ALC with large

enough intensity diminishes extinction risk in the deterministic model.

By contrast, populations controlled by ATH have an extinction probability of sigmoid

shape around U. Thus, we can study the effect of ATH by analyzing the stochastic collapse

threshold (Fig 3B and 3D). For low levels of noise, increasing ATH intensity does not change

the stochastic collapse threshold (Fig 3B and 3D). For medium and high levels of noise, we

observe the following: (i) The stochastic collapse threshold and thus population persistence

become smaller with higher noise levels. (ii) There is a critical control intensity, beyond which

Fig 5. Persistence and extinction depend on the initial population size for ALC. Deterministic population sizes over the first 100

generations as a function of the initial value for ALC. Parameter values K = 400, r = 4.5, s = 0.002, σ = 0 (deterministic), and c = 0.007 (the

value of L/U is 0.007614).

doi:10.1371/journal.pone.0170837.g005
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increasing ATH intensity drastically deteriorates population persistence. (iii) This critical con-

trol intensity becomes smaller, the higher the level of noise.

Fig 3D shows that the stochastic collapse threshold decreases with the strength of the Allee

effect. This makes sense as a collapse is more likely the stronger is the Allee effect. For low con-

trol intensities, ATH does not change the stochastic collapse threshold. For medium and high

control intensities, ATH promotes population collapses. The stronger the Allee effect, the

sooner the onset of the deteriorating effect of ATH.

3.2.3 Summary. Regarding the collapse of large populations, there is a clear difference

between the control methods. ALC with high enough a restocking intensity ensures the sur-

vival of deterministic populations with a large number of individuals that would be doomed to

extinction in the absence of control. In stochastic systems, ALC completely prevent collapses

of large populations considered here. By contrast, ATH is either ineffective (in deterministic

systems and for small control intensities in stochastic systems) or counterproductive (for

medium and high control intensities in stochastic systems).

3.3 Essential extinction

In the previous two extinction scenarios, the deterministic uncontrolled population dynamics

are bistable, i.e. the fate of the population depends on the initial condition. Now we consider

the scenario of essential extinction, where the only attractor is the extinction state. This means

that populations go extinct with probability 1 for randomly chosen initial conditions.

3.3.1 Deterministic population dynamics. It is in the scenario of essential extinction that

we find the main advantage of ALC and ATH: both methods can induce bistability and thus

facilitate population persistence if the control intensity is greater than a critical threshold. This

is proven in Proposition 2 in the Appendix. The critical thresholds for the control intensities

are c0 = L/U for ALC and h0 = d/ f(d) for ATH. Once the critical control intensity has been

exceeded and the controlled system exhibits bistability, populations behave as described in the

previous two scenarios.

3.3.2 Stochastic population dynamics. While noise in bistable systems can be occasion-

ally beneficial to populations by perturbing their size above the extinction threshold, this can

never happen in the scenario of essential extinction, see also Corollary 4.3 in [33]. Determin-

istic populations showing essential extinction only persist for a small number of initial condi-

tions, in particular for those that coincide with the positive fixed points. Yet, when noise is

taken into account, stochastic uncontrolled populations go extinct for all possible initial sizes,

including the positive fixed points, as random events perturb the population size from equilib-

rium. Hence, noise is in this respect counterproductive.

Let us now study the effect of ALC and ATH on stochastic systems for which the determin-

istic dynamics exhibits essential extinction. As in the previous two extinction scenarios, we

will analyze the stochastic Allee thresholds and the stochastic collapse thresholds (Fig 3E to

3H).

As in the deterministic setting, both ALC and ATH are able to save stochastic populations

that would be doomed to essential extinction in the absence of control. This can be seen in Fig

3E to 3H by the existence of a stochastic Allee or collapse threshold. The control-mediated sur-

vival occurs if the control intensity exceeds a critical value; in the case of ALC, the critical con-

trol intensity is close to (but not exactly) zero; i.e. without control there would be essential

extinction. Once the control intensity of ALC or ATH exceeds the corresponding critical

value, the population becomes bistable and the effect of the control methods on stochastic pop-

ulations is analogous to the case of bistable dynamics. The only remarkable difference is that

the disparity between populations controlled by ALC on the one hand and ATH on the other
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hand arises for somewhat lower control intensities than in the bistable scenarios (cf. Fig 3A

and 3C with Fig 3E and 3G).

4 Preventing population outbreaks

The previous Section was concerned with population extinction. Now we shift attention from

vulnerable species to pests, and the aim is to contain their population size in order to avoid

outbreaks. We will study bistable populations only, because under essential extinction there

appears to be less need for controlling outbreaks.

4.1 Outbreaks and probability of outbreaks

First, we need to specify what exactly we mean by outbreaks. In the literature, there are differ-

ent definitions of outbreaks, many of which concern a specific situation or population model,

e.g. [29, 38, 39]. In our case, if K is stable, the concept of an outbreak does not make sense

because all orbits are monotonically attracted towards this point or towards the extinction

state. There are no sustained oscillations in population size, which could be controlled by ALC

or ATH. Hence, we restrict our attention to K being unstable, such that all populations not

attracted towards the extinction state oscillate in size around K. In this situation, an obvious

definition of outbreaks is related to the amplitude of these oscillations. Hence, we will consider

as outbreak any population size exceeding the midpoint between the unstable fixed point K
and the maximum population size f(d).

For uncontrolled and deterministic populations, Fig 6 shows that the probability of out-

breaks switches at the Allee threshold L: for initial population sizes below (above) L the out-

break probability is zero (one). When stochasticity is included, we observe an effect reverse to

that for the extinction probability: noise can cause booms in stochastic uncontrolled popula-

tions that start or drop below L, while populations starting above L can remain below the out-

break threshold thanks to random declines caused by noise. This confers a sigmoid shape to

the outbreak probability (but mirrored horizontally in comparison to the extinction probabil-

ity). The stochastic outbreak threshold, i.e. the population size at which the probability of an

outbreak equals the probability of no outbreak, increases in comparison to the deterministic

outbreak threshold in Fig 6. Hence, stochasticity seems to render populations with a strong

Allee effect more prone to outbreaks.

4.2 Effect of ATH

Fig 6B shows that ATH tends to reduce the probability of outbreaks. This happens for suffi-

ciently large control intensities (h≳ 0.55) and can be easily explained by the harvesting action

of ATH that can mitigate any fortuitous population growth due to noise. For control intensi-

ties that are too small, there is no difference in the outbreak probability between controlled

and uncontrolled populations.

Moreover, Fig 6B shows that, for high control intensities (h≳ 0.7), ATH completely pre-

vents population booms. This may be explained as follows. For sufficiently high control inten-

sities, ATH establishes in a deterministic system bistability between zero and a trapping region

around K (see Proposition 2 in the Appendix). As a consequence, the trapping region imposes

an upper bound on the population size. This upper bound decreases with control intensity and

tends to K when h! 1. Consequently, for high enough control intensities the number of indi-

viduals is asymptotically bounded by a value that is below the outbreak threshold. Hence, pop-

ulation booms are unlikely to happen. They can only occur if the effect of noise moves the

population size above the trapping region for the deterministic system in such a way that the

outbreak threshold is exceeded.
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Fig 6. Probability of outbreak in terms of the initial population size. The population is controlled by (A) ALC

and (B) ATH. Population dynamics are deterministic (σ = 0) or with demographic stochasticity (σ = 1). Calculations

are based on Models (1) and (2) with r = 4.5, ~K ¼ 400 and s = 0.002 (L� 6.015). Population outbreaks are

considered to occur when the number of individuals exceeds (K + f(d))/2. For a given initial population size, the

outbreak probability has been obtained for the first 100 generations and over 1000 replicates.

doi:10.1371/journal.pone.0170837.g006
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4.3 Effect of ALC

Comparing Fig 6A with Fig 6B reveals that ALC has different impacts on outbreak probabili-

ties than ATH has. First we note that for small and medium control intensities (c≲ 0.6), ALC

seems to change outbreak probabilities only marginally. This behaviour may be explained by

two opposing effects of ALC. On the one hand, the restocking of ALC mitigates any random

population decline, which tends to promote the risk of outbreaks. On the other hand, also

ALC establishes a trapping region around K for large enough control intensities (Proposition 2

in the Appendix). Then there is an asymptotic upper bound on population size, and this

bound decreases with control intensity. For small and medium control intensities, the upper

bound is large and potentially greater than the outbreak threshold, while the capability of ALC

to restock population declines is weak.

For high control intensities, ALC has a very different effect than ATH. We have to distin-

guish between small and large initial population size. For initial population sizes above L, ALC

significantly reduces the outbreak probability. This is probably due to the asymptotic upper

bound. However, ALC cannot completely prevent outbreaks (cf. the magenta curve for c = 0.95)

as ATH can, which is probably due to the restocking. For initial population sizes below L, ALC

can have a counterproductive effect, as ALC increases extinction probability in comparison to

the uncontrolled population. This happens approximately for c� 0.6 (cf. green and red curves

with the uncontrolled curve in Fig 6A). For very large control intensities, ALC increases extinc-

tion risk of population sizes below L drastically (e.g., for c = 0.95 in Fig 6A). This may be caused

by the capability of ALC to offset population declines, which becomes so strong for high control

intensities such that populations are almost fully shielded against random declines. However,

they benefit from all possible random growths, which inflates outbreak risk.

4.4 Summary

ATH reveals itself as especially suitable for the control of nuisance species as it reduces or

completely prevents stochastic outbreaks of small populations. By contrast, ALC tends to be

ineffective for low and medium control intensities and is counterproductive for high control

intensities.

5 Controlling outbreaks of forest-defoliating insects

In the previous Section we have considered outbreaks in a bistable population with a strong

Allee effect. In this particular setting, one of the two attractors is the extinction state. That is, if

the population has gone extinct, there cannot be any outbreak in the following generation

unless there is immigration, invasion or some form of external perturbation. However, in bis-

table situations where both attractors are positive, the population can ‘rest’ in a low-density

state until an outbreak is triggered by some mechanism and the population bursts to a higher-

density attractor.

Such a situation often occurs in models of forest-defoliating insects. Here, we consider a

model by Dwyer et al. [29] that incorporates the effect of a generalist predator to a classical

host–pathogen system. The non-dimensionalized stochastic version of this model reads

1 � Iðxt; ztÞ ¼ 1þ
1

k
ðxtIðxt; ztÞ þ ztÞ

� �� k

;

xtþ1 ¼ lxtð1 � Iðxt; ztÞÞ 1 �
2ABxt
B2 þ x2

t

� �

εt;

ztþ1 ¼ �xtIðxt; ztÞ;

ð3Þ
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where the two variables xt and zt represent the host and pathogen densities in generation t,
respectively. Given these densities, I(xt, zt) is the fraction of infected hosts. The term εt is a log-

normal random variable with median 1 and standard deviation σ. Regarding the parameters in

this model, λ represents the net defoliator fecundity, ϕ is the between-season impact of the

pathogen, A is the maximum fraction of defoliators killed by the predator, B is the ratio of the

density at maximum predation to the epidemic threshold and k is the inverse squared coeffi-

cient of variation of the transmission rates, which follows a gamma distribution. Parameter

values have been estimated for populations of the gypsy moth Lymantria dispar as the host

(defoliator) and a baculovirus as the pathogen, yielding λ = 74.6, ϕ = 20, A = 0.967, B = 0.14,

and k = 1.06 [29]. For these values, the deterministic model has three equilibria with high,

intermediate and low defoliator densities. At the high-density equilibrium the defoliator is

controlled by the pathogen while the predator is relatively unimportant. This equilibrium is

unstable and induces an oscillatory attractor. The low-density equilibrium is stable and the

control over the defoliator is exerted by the predator, with the influence of the pathogen being

fairly irrelevant. Finally, the intermediate-density equilibrium is unstable. The inclusion of sto-

chasticity makes the defoliator density move unpredictably among attractors and induces high

variability in the time between insect outbreaks.

Since our goal is to diminish outbreaks of the defoliator population, we consider control

actions on the state variable xt only. Then, a model including ALC can be described by modify-

ing the second equation of Eq (3) to

xtþ1 ¼ max lxtð1 � Iðxt; ztÞÞ 1 �
2ABxt
B2 þ x2

t

� �

; c � xt

� �

εt:

Similarly, for ATH we obtain

xtþ1 ¼ min lxtð1 � Iðxt; ztÞÞ 1 �
2ABxt
B2 þ x2

t

� �

; xt=h
� �

εt:

Fig 7A shows time series of three stochastic defoliator populations with the same initial con-

ditions corresponding to the uncontrolled system and systems controlled by ALC and ATH

with intensities c = h = 0.9. ATH keeps the defoliator densities close to zero for the entire time

period considered. By contrast, under the control of ALC, the defoliator reaches densities

much higher than in the absence of control.

In order to analyze if this is always the case, Fig 7B compares the maximum defoliator den-

sities for the uncontrolled and controlled populations with different control intensities and dif-

ferent initial conditions for both pathogen and host. We have chosen maximum densities as

they are the quantity of interest in outbreak situations. ATH clearly reduces the maximum

defoliator density for the range of control intensities considered. By comparison, maximum

population sizes are both higher and more variable when controlled by ALC and ATH. In par-

ticular, while ATH performs better in reducing population maxima when increasing control

intensities to the values shown in (Fig 7B), ALC loses some of its effectiveness for the control

intensity of c = 0.95. This can also be seen in Fig 7A, where the maximum density of popula-

tions controlled by ALC is much larger than when the number of insects is not controlled.

6 Discussion and conclusions

We have compared the impact of ALC and ATH on extinction and outbreak probabilities. In

order to capture stochastic effects, we have used the concept of stochastic Allee thresholds, sto-

chastic collapse thresholds and stochastic outbreak thresholds. Both control methods have in

common that they become effective (in the sense of changing stochastic extinction or outbreak

Population control methods in stochastic extinction and outbreak scenarios

PLOS ONE | DOI:10.1371/journal.pone.0170837 February 2, 2017 15 / 22



thresholds) only for sufficiently large control intensities. If their interventions do show an

effect, there is a clear disparity between the two methods in each of the biological situations

considered.

Regarding the control of outbreaks, we have studied how the control methods affect the

outbreak probabilities. ATH proves beneficial in terms of reducing or even completely elimi-

nating outbreak probability. It can also significantly curtail the magnitude of population

Fig 7. Numerical simulations for the gypsy moth model. (A) Comparison of model time series for populations of the defoliator gypsy

moth. The black curve corresponds to the uncontrolled system, the blue one to the system controlled by ALC with c = 0.9 and the red one to

ATH with h = 0.9. (B) Box plots of the maximum population density of defoliators for the uncontrolled system and systems controlled by ATH

and ALC with different intensities. Calculations are based on Model (3) with λ = 74.6, ϕ = 20, A = 0.967, B = 0.14, k = 1.06 and σ = 0.5. Initial

densities in (A) are x0 = 10 for the defoliator and z0 = 7 for the pathogen. Values in (B) have been obtained from 100 time series with initial

population densities uniformly distributed in [0.01, 100] and a time horizon of 50 generations.

doi:10.1371/journal.pone.0170837.g007
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booms (measured by maximum defoliator population sizes in the gypsy moth model). By con-

trast, ALC is either ineffective or even counterproductive. This holds for both the Allee effect

and the gypsy moth model. As ATH removes individuals from and ALC adds individuals to a

population, these results seem plausible because the goal is to get rid of rather than to augment

pest species.

Since population fluctuations can be particularly important in driving population booms,

we have defined outbreaks as the population size exceeding a value well above the carrying

capacity, which can only be achieved in deterministic systems if the population cycles. There-

fore, our definition of outbreak probability is not simply the inverse of extinction probability,

and it differs from related measures such as establishment, invasion or persistence probability,

see e.g. [25, 30, 33].

Regarding vulnerable species, our results are similar but reversed. Again, the control inten-

sities of both ALC and ATH need to be high enough to change extinction risk. Once there is

an effect, ALC proves beneficial for population persistence and is even able to completely elim-

inate the collapse risk (large population extinction). By contrast, ATH is either ineffective or

counterproductive in preventing outbreaks. These results seem plausible as well because aug-

menting vulnerable populations appears more suitable than reducing them.

Interestingly, for deterministic population dynamics, we prove that neither ALC nor ATH

have any effect on the extinction probabilities of small populations (Proposition 1.1). This

makes sense in the case of ATH because it harvests relatively large populations and therefore

does not change the production curve at small population sizes. In the case of ALC, its ineffi-

cacy may appear surprising at first sight. However, while ALC does restock small populations,

it does not do so to large enough a level to exceed the Allee threshold (cf. Fig 2). Hence, the

restocking tends to slow down the extinction process, but it cannot prevent extinction in the

first place. This could only be achieved by restocking intensities c> 1; however, they will cause

a population blow-up if implemented also at larger population sizes [11].

In the scenario of large population extinctions, ATH has no effect on the deterministic col-

lapse threshold, whereas ALC is either ineffective as well or can reduce extinction risk depend-

ing on the initial condition and the control intensity (Proposition 1.2). This is a surprising

result because augmenting the population in this situation is a better option than harvesting it,

even though extinction is caused by exceeding a collapse threshold. This can be explained as

follows. ATH is ineffective because harvesting takes place only at population sizes below the

collapse threshold. ALC can be effective because it restocks populations after they have col-

lapsed. Hence, the restocking intervention ‘counter-compensates’ for the overcompensatory

population dynamics causing the collapse of large populations. If the order of events or census

timing were changed, the quantitative results could be different [40–42].

While the two control methods have no effect in the deterministic small and large popula-

tion extinction scenarios (or, in the case of ALC, only conditionally), ALC and ATH can

become effective (or counterproductive) in the presence of stochasticity. In that sense, stochas-

ticity can be a foe or a friend to management programmes.

The scenario of large population extinction is particularly interesting for another reason.

While conservation biology and mathematical modelling has been mostly concerned with

small populations [22, 24, 31–33, 43, 44], here we show that also large populations can be at

risk of extinction, even if they have population sizes well above the Allee threshold and close to

the carrying capacity. At such large population sizes, one might be tempted to expect that Allee

effect could be ignored. However, in concert with overcompensatory population dynamics,

the population is not safe even at those high levels.

So far, the interplay between Allee effects and overcompensation has been mostly studied in

the context of essential extinction [14, 33]. However, as highlighted before, the Allee effect has

Population control methods in stochastic extinction and outbreak scenarios

PLOS ONE | DOI:10.1371/journal.pone.0170837 February 2, 2017 17 / 22



been largely ignored in control methods aimed at stabilizing populations, but see [11, 45–47].

By contrast, the fisheries literature seems to have paid more attention to the role of Allee effects

in managed populations and pointed out that Allee effects curtail yield and stock levels at low

population abundance, e.g. [22, 48, 49].

Allee effects have also been found to play a role in biological invasions [50] and in pest out-

breaks (e.g., for the gypsy moth see [26, 51]). In this paper, we have studied outbreaks in two

different types of models. In the model with a strong Allee effect (Sect. 4), the low-density

attractor corresponds to extinction, whereas in the gypsy moth model by Dwyer et al. [29] the

low-density attractor is positive (Sect. 5). In the latter case, noise promotes even more popula-

tion variability as it can cause recurrent jumps between attractors.

The results in this paper suggest that ALC can be a suitable control method to enhance per-

sistence stability of small populations or those at risk of extinction, and that ATH can be an

effective method for controlling population outbreaks. These conclusions are fundamental for

the design of management programmes in biological conservation and pest control. We ought

to mention that this paper has not considered other areas of population management. For

instance, ATH in particular might be appropriate for the exploitation of biological resources,

e.g. in fisheries. To this end, however, both stock stability and yield variability are likely quanti-

ties of interest. Regarding ALC, interventions require a stock of individuals that can be added

to the controlled population. Hence, ALC might be most appropriate when releasing natural

enemies as biocontrol agents, as insect predators or parasitoids may be reared relatively easily.

Translocation programmes are another plausible area of application, but the conservation of

endangered species may be difficult when the species is rare and cannot be stocked.

Appendix

In this Appendix we prove the results that have been stated throughout this paper regarding

deterministic populations. We denote by

RðxÞ ¼ maxf f ðxÞ; x � cg and HðxÞ ¼ minf f ðxÞ; x=hg

the production function for populations controlled by ALC and ATH, respectively.

We start by considering ATc 2 (K, +1) and ATh 2 (0, K) as the largest positive solutions of

the equations f(x) = x � c for ALC and f(x) = x/h for ATH, respectively. These values corre-

spond to the activation thresholds for ALC [7] and ATH [11].

For x 2 (0, L) the relative position of the two curves involved in R(x) may vary with the con-

trol intensity, whereas for the other x-values R(x) is completely defined in terms of ATc. For

x 2 [L, ATc] the curve y = f(x) is above y = x � c and thus R(x) = f(x), whereas for x 2 (ATc, +1)

the relative position of these curves is reversed and then R(x) = x � c.
In the case of ATH, the straight line y = x/h is above y = f(x) for x 2 (0, L] and therefore H

(x) = x/h. For x 2 [L, ATh) the relative position of these curves depends on the control intensity,

whereas for [ATh, +1) the curve y = f(x) is above y = x/h and then H(x) = f(x).

Graphically, R has a bimodal shape with a local maximum at d and a local minimum at ATc.
H is unimodal with a maximum at max{d, ATh}.

The next result characterizes the dynamics of the controlled populations when f( f(d))> L
holds. This condition is sufficient for bistability under the assumptions (C1)–(C3). It is also

necessary in case of a negative Schwarzian derivative, which is true for many population mod-

els like the generalized Beverton–Holt, Hassel, quadratic or variants of Ricker [14, 52]. In par-

ticular, it is true for the mate-finding Allee effect model considered here for numerical

simulations.

Proposition 1 Assume that (C1)–(C3) hold and f( f(d))> L.
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1. If lim
x!þ1

f ðxÞ � L, uncontrolled populations and populations controlled by ATH and ALC go

extinct for x0 2 (0, L), and persist for x0 2 [L, +1).

2. If lim
x!þ1

f ðxÞ < L, there exists a unique U> K such that f(U) = L. Uncontrolled populations

and populations controlled by ATH persist for x0 2 [L, U] and go extinct for x0 2 (0, L) [

(U, +1). Populations controlled by ALC with c 2 [L/U, 1) persist for x0 2 [L, +1) and go

extinct for x0 2 (0, L), while for c 2 (0, L/U) those initiated with x0 2
[

k¼0

þ1

½L=ck ;U=ck � persist

and those with x0 2 ð0;LÞ [
[

k¼0

þ1

ðU=ck ;L=ckþ1Þ go extinct.

Proof. We start by proving that small populations starting with x0 2 (0, L) go finally extinct

in all cases and for all systems. This is obvious for uncontrolled populations, since f(x)< x for

all x 2 (0, L) and thus orbits correspond to strictly decreasing positive sequences. The limit of

these sequences is a fixed point of the system, so must correspond to the extinction state. The

same conclusion can be obtained for populations controlled by both ATH and ALC. For

x 2 (0, L), we have H(x) = min{ f(x), x/h} = f(x)< x since f(x)< x< x/h. On the other hand,

x � c< x and f(x)< x for x 2 (0, L), so R(x) = max{ f(x), x � c}< x.

Assume now that lim
x!þ1

f ðxÞ � L. Then, by (C1)–(C3), f(x)� L for all x 2 [L, +1). Conse-

quently, uncontrolled populations that start in [L, +1) persist. This is also true for populations

controlled by ALC or ATH. In the case of ALC, the conclusion follows from R(x) = max{ f(x),

x � c}� f(x)� L for all x 2 [L, +1). For ATH we must distinguish two cases. For x 2 [L, ATh],
we have f(x)� L and x/h� L/h> L, which yields R(x) = min{ f(x), x/h}� L. On the other

hand, R(x) = f(x)� L for x 2 (ATh, +1).

Next, assume that lim
x!þ1

f ðxÞ < L. The existence of U follows by applying Bolzano’s theorem

to h(x) = f(x) − L in (K, +1), and its uniqueness follows by (C3). Moreover, we note that

f( f(d))> L = f(U) yields f(d)< U. We show f([L, U])⊂ [L, U] by considering three different

cases. Assume initially x 2 [L, d]. Then, L = f(L)� f(x)� f(d)<U because f is strictly increas-

ing in (0, d). For x 2 (d, f(d)] we have L< f( f(d))� f(x)< f(d)< U, since f is strictly decreas-

ing in (d, +1). The same argument leads to L = f(U)� f(x)< f( f(d))< U for x 2 ( f(d), U]

given that f( f(d))< f(d)< U. This completes all cases and allows us to conclude that uncon-

trolled populations initiated in [L, U] persist.

The same conclusion is true for populations controlled by ALC or ATH. For ALC, we have

R(x) = max{ f(x), x � c}� f(x)> L for all x 2 [L, U]. On the other hand, f(x)� U and x � c�
U � c< U, yielding R(x) = max{ f(x), x � c}� U. For ATH, H(x) = min{ f(x), x/h}� f(x)� U for

all x 2 [L, U], and for these values f(x)� L and x/h� L/h> L, so H(x) = min{ f(x), x/h}� L.

Populations starting with x0 2 (U, +1) go eventually extinct in the uncontrolled case

because x1 = f(x0)< f(U) = L. Given that ATh< K< U, ATH does not alter the production

function in the interval (U, +1), and therefore the same conclusion is valid for populations

controlled by this method.

Assume now c 2 [L/U, 1) for ALC. Given that f(U) = L� U � c, we have ATc� U. For

x 2 (U, +1) we have R(x) = max{ f(x), x � c} = x � c> U � c� L. Since we have already shown

that R([L, U])⊆ [L, U], we obtain R([L, +1)) ⊆ [L, +1), and hence controlled populations

starting in [L, +1) persist.

Finally, consider c 2 (0, L/U). Since (L/c) � c = L = f(U)> U � c and f is strictly decreasing in

(d, +1) ⊃ (U, +1), we have U< ATc< L/c. Controlled populations initiated with

x0 2 (U, L/c] go extinct because f(x0)< f(U) = L and x0 � c< (L/c) � c< L, which yields
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x1 = max{ f(x0), x0 � c}< L. Consider now k� 1 and x0 2 (U/ck, L/ck+1) ⊂ (ATc, +1). Then,

xk = x0 � ck 2 (U, L/c) and thus xk+1 < L. This proves that all controlled populations initiated in
[

k¼0

þ1

ðU=ck; L=ckþ1Þ go extinct. Assume now x0 2 [L/ck, U/ck]⊂ (ATc, +1) for k� 1. Then,

xk = x0 � ck 2 [L, U] and hence controlled populations starting in
[

k¼0

þ1

½L=ck;U=ck� persist.

Next, we show that both ALC and ATH can induce bistable dynamics in an uncontrolled

population showing essential extinction.

Proposition 2 Assume that (C1)–(C3) hold and the dynamics shows essential extinction.

Then, there exist c0, h0 2 (0, 1) such that the system controlled by ALC with any intensity c> c0

and the system controlled by ATH with any intensity h> h0 exhibit bistable dynamics.
Proof. According to Proposition 1, it must be f( f(d))� L (otherwise, the dynamics would

show bistability). Since f(K) = K> d> L and f(d)> d, Bolzano’s theorem and the strict

decrease of f in (d, +1) yield the existence of a unique U> K verifying f(U) = L. On the other

hand, f(x)� L for all x 2 [L, U] because f is strictly increasing in (L, d), strictly decreasing in

(d, U) and f(L) = f(U) = L.

Consider the restocking intensity c0 = L/U< 1. For c> c0 we can use the same reasoning as

in Proposition 1 to show that orbits starting in [L, +1) remain in this interval and the corre-

sponding populations persist.

Let us now study the case of ATH. Consider the harvesting intensity h = d/ f(d), for which

ATh = d. The peak of the stock–recruitment curve for the controlled system is f(ATh) = ATh/h =

f(d)> d and its image is f( f(ATh)) = f(ATh/h) = f( f(d))� L. As h increases, the straight line y =

x/h tends to y = x and ATh strictly grows and approaches K for h! 1. Then, given that f is strictly

decreasing in (d, +1), the term f(ATh) = ATh/h strictly decreases and tends to f(K) = K. With the

same argument, f(ATh/h) strictly increases and tends to K> L. Hence, according to Bolzano’s

theorem, there must exist h0� d/ f(d) such that f(ATh0
/h0) = L. Moreover, given the strict increase

of f(ATh/h), we have f(ATh/h)> L for h> h0. By arguments already used here, we obtain H(L, U)

⊂ [L, U], and we conclude that the system controlled by ATH shows bistability for h> h0.
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