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Abstract
The increasingly acknowledged role of chaos in population dynamics involves severe
implications for the management of species. So-called violent oscillations may lead
to small densities making possible population extinction as well as to high densities
making the population susceptible for disease outbreaks or over-crowding. This con-
tribution provides an astonishingly simple approach to deal with both mentioned
cases. It is based on effectively controlling irregularly fluctuating populations with
threshold mechanisms, which can also be used to model basic ecological processes
such as immigration or refuges. Its application is investigated with respect to the
required effort, robustness against noise and planning reliability (variance reduc-
tion). Limiter control proves to be a powerful tool in controlling populations, but
decision-makers have to be aware that well-intended management measures can have
the exactly opposite effect in certain situations. The results also indicate that chaos
may be difficult to detect in real populations due to limitations by environmental
conditions.

Keywords: Population dynamics, chaos control, limiter, threshold, difference equa-
tion.

1. Introduction

The control and the management of population dynamics is one of the main objectives
of mathematical modelling in ecology. The prediction of optimal harvesting rates, for

∗Corresponding author. Present address: Gulbenkian Institute of Science, Theoretical Epidemiology
Group, Apartado 14, 2781-901 Oeiras, Portugal
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instance in fishery or forestry, is intended to guarantee a sustainable development and
optimal yields. Other examples include the control of pest species, e.g. in agricul-
ture, epidemics, invasions of exotic species or genetically modified organisms – each of
them causing possibly catastrophic ecosystem-breakdowns, severe economic damage or
enormous threats on health (Shigesada and Kawasaki, 1997; Kot, 2001; Murray, 2002;
Edelstein-Keshet, 2005, and references therein).

Mathematical models have been used to estimate the effects of different management sce-
narios such as harvesting, culling, hunting, poisoning, vaccination, quarantine, immuno-
contraception, barrier zones, release of sterile individuals, predators or competitors (e.g.
Holling, 1978; Lewis and van den Driessche, 1993; Sharov and Liebhold, 1998; Courchamp
and Cornell, 2000; Murray, 2002). In the context of conservation biology, management
conversely aims at stabilizing endangered populations. Possible measures include habitat
management, e.g. the construction of corridors or stepping-stone population patches, or
the introduction of additional individuals to support the focal population.

Since the seminal work of May in the mid-1970s (May, 1974; May and Leonard, 1975;
May, 1976; May and Oster, 1976), it has been recognized that even simple deterministic
population models have the potential for erratic fluctuations. This has made chaos an
ongoing topic among theoretical ecologists (Hassell et al., 1976; Gilpin, 1979; Takeuchi and
Adachi, 1983; Hastings and Powell, 1991; Allen et al., 1993; Hanski et al., 1993; Ellner and
Turchin, 1995; Vayenas and Pavlou, 1999; Perry et al., 2000; Cushing et al., 2003; Kooi and
Boer, 2003; Turchin, 2003). Mathematical models do suggest that aperiodic oscillations
are ubiquitous in time and space, and play an important as well as contructive role in
stabilization and self-organization. At the same time, the occurence of chaos in real-world
populations remains controversial. Sceptic arguments include that irregular oscillations
may be induced by superimposed noise or that the “violent” chaotic oscillations leading
to partially small densities are prone to population extinction, and species thus evolve
towards a more stable dynamic behaviour. However, there is increasing experimental
evidence in favour of chaotic population dynamics (Costantino et al., 1995, 1997; Becks
et al., 2005).

McCallum (1992) found that chaotic population dynamics change to simple cyclical be-
haviour in a wide parameter range if a simple constant of external recruitment is added.
This recognition was picked up by Stone (1993), who showed that a small perturbation
is enough to break down the period-doubling route to chaos. Parthasarathy and Sinha
(1995) introduced this approach into the physics literature as the constant feedback con-
trol. Doebeli (1993) applied certain adjustments to the growth rate, thus driving the
population to a stable state. Doebeli and Ruxton (1997) and Solé et al. (1999) next in-
vestigated the proportional feedback method by Güémez and Mat́ıas (1993), the former
in the context of metapopulations and the latter in the context of population dynamics as
well as continuous-time and individual-based models. Various control schemes have been
explored by Gamarra et al. (2001) and applied to a tritrophic time-continuous model.
Gamarra and Solé (2000) had already shown that varying trapping effort in this model
can explain the sudden shifts in the amplitudes of the lynx oscillations which are observed
in the Hudson Bay Company records – one of the most popular data sets in ecology. Their
system presumes a minimum bound for the lynx, which is modelled by an additive constant
and may be biologically explained by the possible existence of alternative prey. Schwartz
et al. (2004) derive vaccine strategies in a stochastic model of measles, in order to suppress
epidemic outbreaks before they occur. Hudson et al. (1998) present very interesting data
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from field experiments in which the parasitic nematode Trichostrongylus tenuis has been
removed from individual red grouses (Lagopus lagopus scoticus). By treating estimatedly
15-50% of a population, cyclic population crashes as well as the variance in population
density have been clearly reduced. Desharnais et al. (2001) made further progress by
studying the outbreak control of the flour beetle Tribolium castaneum. They did not
only simulate a three-dimensional system describing the different insect stages, but they
also experimentally demonstrated that the introduction of a few adult individuals in a
laboratory population results in a dampening of the fluctuations.

In this contribution, we shall propose the application of a very simple control scheme to
population models with non-overlapping generations, which can be described by a single
nonlinear difference equation. The idea is based on a threshold mechanism: In each time
the population density exceeds a certain threshold density h, it is simply reset to h, e.g. by
way of hunting or some other method appropriate for the given situation. The threshold
can be determined as a critical density above which infectious diseases may spread or
there are losses due to competition or overcrowding. There may be also environmental
restrictions which prevent the population from reaching its intrinsic carrying capacity.
Alternatively, the threshold can also be applied as a lower threshold. This reflects the
introduction of additional individuals or the existence of a refuge within the population.
Immigration could also be modelled in this way, especially if the population experiences
a strong rescue effect (Brown and Kodric-Brown, 1977) and is recolonized from other
patches in a source-sink or meta-population (e.g. Allen et al., 1993).

This simple control mechanism was explored theoretically in a physics context with the
aim to control chaotic dynamics. Ott et al. (1990) had shown that asymptotically small
perturbations can stabilize natural states of the uncontrolled chaotic system. But this
requires much knowledge of the system’s state. Corron et al. (2000) were the first who
experimentally stabilized unstable periodic orbits using simple limiters, with the goal
to use the least possible effort. They introduced the term limiter control. We will use
this term throughout this contribution, though we will consider a fixed threshold which
corresponds, to be precise, to a hard limiter (Wagner and Stoop, 2001; Stoop and Wagner,
2003). The dynamics of limited (flat-topped) maps had already been analyzed by Glass
and Zeng (1994), and Sinha (1994) studied limiters in the sense of external, applied
control.

This contribution is outlined as follows. In the next section, limiter control is applied to
the well-known logistic map (e.g. Collet and Eckmann, 1980; Kaplan and Glass, 1995).
As it turns out, a limiter from above results in a higher mean population density. At
least at first sight, this paradoxic result seems to be somehow counterintuitive. As will
be demonstrated, this paradoxon is due to a simple restriction of the phase space. The
usage of limiter control is studied with respect to (i) noise, (ii) reduction of variance and
(iii) the required effort. The next section deals with another chaotic population model,
namely that of Ricker (1954). Since the Ricker model has some other specific features
than the logistic model, different results can be observed. In section 4., the point of view
is shifted from control from above (e.g. in the sense of optimal harvesting) to control from
below (e.g. in the sense of supporting threatened species). Finally, the usage of limiter
control in population modelling and its pitfalls are discussed and related to similar work.
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2. Limiter control of the logistic map
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Figure 2.1: Bifurcation diagram of the logistic map (2.2).

Let xt be the density (or abundance) of a population in year (or generation) t, t ∈ N.
Then the time series of the population densities is given by the difference equation

xt+1 = f(xt) (2.1)

and an initial value x0 > 0, where f(xt) is for density-dependent models a nonlinear
function of xt. The logistic map is a well-known model of density-dependent growth. It
can be described by the quadratic function

f(xt) = r(1− xt)xt . (2.2)

This is the scaled version where the interval 0 ≤ xt ≤ 1 is invariant for 0 ≤ r ≤ 4. The
parameter r > 0 is the intrinsic growth rate. Fig. 2.1 shows the bifurcation diagram of
the logistic model, i.e. all the asymptotically occuring densities are plotted for each value
of the parameter r. Note that in this and in all other Figures, the asymptotic densities
have been restricted for computational reasons to 128 values after an initial time of 100
generations. It is well-known, that there may be up to two fixed points of the logistic
map. The trivial solution x∗0 = 0 is stable for r < 1 and becomes unstable for r > 1,
where the nontrivial solution

x∗1 =
r

r − 1
(2.3)

emerges. This fixed point is stable for 1 < r < 3. For r > 3, a cascade of period-
doubling flip bifurcations takes place. For r∞ = 3.5699..., chaotic dynamics interwoven
with periodic windows can be observed. A chaotic time series is shown in Fig. 2.2a
for r = 4.

2.1 Hard limiter control and its paradoxic effect

Let us now apply limiter control from above to the logistic map. Then eq. (2.2) becomes

fh(xt) = min{r(1− xt)xt, h} (2.4)
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Figure 2.2: Time series of the logistic map (2.2) in the chaotic regime (a) and with hard
limiter control (b). Parameter values: r = 4, x0 = 0.1, h = 0.9.
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with the limiter h ∈ (0, 1). The resulting time series for r = 4 and h = 0.9 is shown
in Fig. 2.2 b. The formerly chaotic dynamics has been forced to a periodic oscillation.
This aspect will be addressed again below. Now, however, it should be noticed that the
mean density x̄ has increased to 0.612... (compared to 0.511... in model (2.2) without
limiter; 1000 generations each, x0 = 0.1). Fig. 2.3 depicts the asymptotic dynamics of the
controlled model depending on the limiter h. For h = 1, the dynamics is still chaotic, but
already for a slightly smaller h the oscillations become periodic. At around h = 0.9 there
appears a two-cycle, which amplitudes decrease with h and vanish at h = 0.75, where
the fixed point x∗1 is met. For h < 0.75, the dynamics are simply forced to the limiter.
The mean densities are over a wide range of limiters clearly larger than the mean density
of the logistic map without limiter control. This is a counterintuitive result, since the
density has been limited from above, and one would expect a decreasing mean.
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h
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0.8

1

x t

Figure 2.3: Bifurcation diagram of the limiter-controlled logistic map (2.4) with r = 4.
The grey line represents the mean of the asymptotic densities. The dashed line corre-
sponds to the mean density of the logistic model without limiter control.

Note that limiter control has already been applied by Wagner and Stoop (2001) to the
logistic map. Here, we provide to our knowledge the first study in population biology
context and therefore want to highlight the paradoxic effect, that the limiter control
aimed at reducing the population density results in the probably non-intended increase
in mean density, which shall be referred to as paradox of simple limiters.

An intuitive explanation of this paradox is given in Fig. 2.4. The well-known cobweb-
bing algorithm is applied both to the logistic map and its limiter-controlled variant. The
algorithm starts at x0 = 0.5, because from there the maximum of the logistic map is
reached. This allows the dynamics to be mapped back to the descending branch inter-
secting the abscissa. Hence, in the chaotic regime the ergodic orbit fills out the whole
interval [0, 1]. Conversely, in the limiter-controlled model the mapping cannot explore the
whole descending branch, because the top is cut off. The dynamics is thus restricted to
a much smaller interval. The differences in possible densities are highlightened in thick
grey. One can easily see that the missing lower interval is a larger one than the missing
upper interval. This means that the state interval is “shifted up”, which explains the
larger mean density.
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Figure 2.4: The quadratic mapping (thin line) and its flat-topped limiter control variant
(thick line). The cobwebbing is displayed in respective dashed lines. The diagonal is
shown in a grey line, and the difference in the intervalls pronounced in thick grey lines.
Parameters: r = 4, h = 0.9, x0 = 0.5.

7



F.M. Hilker & F.H. Westerhoff Control of chaotic population dynamics

The flat-topped mapping also explains why the limiter-controlled dynamics becomes
forced to periodic oscillations or stable fixed points (Glass and Zeng, 1994; Sinha, 1994;
Wagner and Stoop, 2002). Once an orbit reaches the cut-off region (and due to the ergod-
icity it will), the image will always be the same. Hence, the system is trapped in a super-
stable cycle (Glass and Zeng, 1994). The length of this cycle can easily be determined
(Sinha, 1994). If the k-th iterate of f(xt) exceeds the limiter h, then a period k is obtained.
Thus one could principally compute the mean density. Generally, flat-topped unimodal
maps cannot exhibit chaotic motion. Although they undergo a course of period-doubling,
they show an exponential convergence towards the period-doubling accumulation point
(Wagner and Stoop, 2002). For the chaotic regime the mean density can be calculated as
well. This is demonstrated in Peitgen et al. (2004), pp. 485, for r = 4.

2.2 Noise

The simplicity of the limiter control is based on the application of a constant threshold,
which is independent of the current system state. In real-world situations, however, the
deterministic threshold value is very probably not matched exactly or superimposed by
noise. In this subsection, the impact of a stochastic limiter on the resulting dynamics
shall be investigated. The model (2.4) is extended to a version with multiplicative noise
in the limiter

fh,ω(xt) = min{r(1− xt)xt, h(1 + ωξt)} , (2.5)

where ω > 0 is the noise intensity and ξt a Gaussian random variable with mean zero and
variance one. Naturally, the dynamics itself is affected by environmental or demographic
stochasticity and could be randomized. But since we are primarily interested in the
consequences of a noisy limiter, we restrict ourselves to this latter case.

The resulting bifurcation diagrams are shown in Fig. 2.5 for various noise intensities.
Since the dynamics is affected by noise, the deterministic orbits are blurred. For larger
limiters, this effect is naturally stronger in absolute values. The general shape of the mean
density remains qualitatively the same as in the deterministic model. Though the noise
has some bluring effect on the mean density as well, the paradox of the simple limiters
can still be observed even for a noise intensity as large as ω = 0.2.

2.3 Variance

Since limiter control turns the dynamics from chaos to periodicity or stable fixed points, it
automatically enables predictability. This might be of special interest from a management
point of view, because it guarantees knowledge of the system’s future development.

For a reliable exploitability of the system, one might additionally wish variances in the
densities as small as possible. In Fig. 2.6, the variances are plotted against the ap-
plied limiters. Compared to the variance of the model without limiter, the application
of thresholds rapidly reduces the deviations in the system dynamics. With the limiter
approaching the nontrivial solution x∗1 , the variance nearly vanishes. This also holds true
for noisy limiters. Only in the extreme case with ω = 0.2, the variance does not disappear
immediately, but is still much smaller than in the non-controlled situation.
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(c) ω = 0.10
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(d) ω = 0.20
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Figure 2.5: Bifurcation diagram of the noisy limiter-controlled logistic map (2.5). Pa-
rameters as in Fig. 2.3
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Figure 2.6: Variances in the densities of the limiter-controlled logistic map (2.5) with
noise intensities ω = 0.0 (thick line), ω = 0.1 (solid line) and ω = 0.2 (dotted line). The
dashed line corresponds to the variance in model (2.2) without limiter control. Other
parameters as in Fig. 2.3.

2.4 Effort

When applying limiters, one has to follow a single rule, namely to reduce the density to a
threshold in the case this threshold is exceeded. How much effort does it cost on average
to apply the limiter? Let us first define the effort in a single time step as the absolute
difference between the limiter and the image of the mapping if limiter control would not
be applied. For example, in the logistic model this is the difference between the thick and
the thin dashed lines starting at xt = 0.5 in Fig. 2.4. The effort is only accounted for if
the limiter is applied. Averaging over time, one thus obtains the mean effort E

E =
1

T

t0+T∑
t=t0

|f(xt)− fh,ω(xt)| . (2.6)

Throughout this contribution, the parameters t0 and T are the same as in the bifurcation
diagram for determining the asymptotic dynamics, i.e. t0 = 100, T = 128.

The effort is plotted in Fig. 2.7 against the limiter for various noise intensities. In the
deterministic case (thick line), one can observe that there is only little effort for a limiter
close to unity. Around h = 0.85, there is a small hump, but at h = 0.75 the effort vanishes.
This can be explained as follows. The limiter control induces the orbit to map exactly on
the fixed point. In the deterministic model, the system will remain in this state, whereas
in the stochastic models each small perturbation will be reinforced, because the fixed
point is unstable. As a consequence, there is a minimum of effort if the limiter matches
the fixed point x∗1 as long as there is no or only small noise. For larger noise intensities,
the minimum simply vanishes.

For limiters smaller than the fixed point, there is a large maximum of effort around h = 0.4.
This can be made clear by performing the cobwebbing algorithm. An application of limiter
control with such small limiters thus is unreasonable in real-world situations.
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Figure 2.7: Effort as defined in (2.6) of applying limiter control in the logistic map (2.5)
with noise intensities ω = 0.0 (thick line), ω = 0.1 (solid line) and ω = 0.2 (dotted line).
Other parameters as in Fig. 2.3.

3. Limiter control of the Ricker model
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Figure 3.8: Bifurcation diagram of the ricker model (3.8).

In this section, the Ricker model (1954) shall be considered as another example exhibiting
overcompensatory behaviour, too, but also some other distinguished characteristics. The
Ricker model reads

f(xt) = xt exp(r(1− xt

K
)) (3.7)

with parameters r, K > 0. For the sake of comparability with the logistic map, the
above mapping is transformed to obey images within the unit interval just. Therefore,
introducing the variable x̃t = rxt/(K exp(r(1 − 1/r))) and then omitting the tilde for
notational simplicity, the above equation can be transformed into

f(xt) = xt exp(r − exp(r − 1)xt) . (3.8)
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The bifurcation diagram with varying parameter r is shown in Fig. 3.8. The trivial fixed
point x∗0 = 0 is always unstable. The nontrivial solution

x∗1 = r exp(1− r) (3.9)

is stable for r < 2 and unstable otherwise. From r = 2 on, a cascade of period-doubling
bifurcation drives the dynamics to chaotic oscillations with some interwoven periodic
windows.

3.1 Hard limiter control

The limiter-controlled model of (3.8) reads in its stochastic version

fh,ω(xt) = min{f(xt), h(1 + ωξt)} . (3.10)

The bifurcation diagram of the deterministic model with varying limiter h is shown in
Fig. 3.9a. As can be expected, the chaotic regime of the non-controlled model is forced
to periodic cycles or, in the case that the limiter is at least as small as the nontrivial
solution, to a stable fixed point. The mean densities roughly remain at the same level as
in the model without limiter control. This holds for basically the whole range of reason-
able limiters. Hence, limiter control is a practical tool for guaranteeing that population
dynamics do not swap over predetermined limiter thresholds, while at the same time the
mean density is nearly conserved. Only for a small interval of limiters, say 0.35 < h < 0.5,
limiter control slightly reduces the mean population density (and, of course, for h < x∗1).
The effect of a noisy limiter is qualitatively the same as for the logistic model. The
corresponding figures are omitted for the sake of brevity.

The paradox of simple limiter control as seen for the logistic model cannot be observed for
the Ricker model. This is due to the special form of the mapping f(xt), cf. the sketched
cobwebbing algorithm in Fig. 3.10. For large values of xt f(xt) decreases, but in such a
way that it remains positive. Due to the sharp decline of this convex branch the image
xt+1 can be mapped back again also to the center of the mapping’s top. Though the
extent of the possible state space is reduced, as highlighted by the thick grey line, the
simulations indicate that the mean of the periodic motion does not differ much from the
mean of the chaotic motion.

3.2 Variance and effort

Considering the variance in Fig. 3.9b, one can observe that the variations are at about
the same level for a large limiter (roughly h > 0.85 in the deterministic case and h > 0.75
in the cases with stochasticity). But then the variance decreases with decreasing limiter
towards (nearly) zero for h < x∗1 , where the orbit is stabilized at the fixed point or the
limiter value.

The effort is plotted against the limiter in Fig. 3.9c. There is a minimum at h = x∗1 for the
same reason as explained for the logistic model. There are, however, some more humps.
They are due to the cycles with short periodicity as can be seen in Fig. 3.9a. Because the
limiting procedure with much “removal” of density has to be performed more frequently,
the mean effort is increased. The effect of noise blurs these deterministic extrema.
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Figure 3.9: Limiter-controlled Ricker model (3.10). (a) Bifurcation diagram and mean
densities of the determinsitic model, (b) variances and (c) efforts depending on the lim-
iter h. Other parameters as in Fig. 3.8. Parameters: r = 3.5, and the noise intensities in
(b) and (c) are chosen as ω = 0.0 (thick line), ω = 0.1 (solid line) and ω = 0.2 (dotted
line).
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Figure 3.10: The mapping of the Ricker model (thin line) and its flat-topped limiter
control variant (thick line). The cobwebbing is displayed in respective dashed lines. The
diagonal is shown in a grey line, and the difference in the intervalls pronounced in thick
grey lines. Parameters: r = 3.5, h = 0.9, x0 = exp(1− r).
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4. Limiter control “from below”: Population support

So far the limiter has been applied from above, i.e. a maximum operator has been used
to pose an upper threshold. This section, in contrast, aims at supporting a population to
maintain densities above a certain threshold. Restocking programs are common practice
especially in commercially managed populations with the primary aim of incrementing
the yield. The rehabilitation of populations is another example of stocking activities. If
the densitiy would become too small, the population is prone to extinction because of
demographic stochasticity or inbreeding. The (re-)introduction of additional individuals
can be a tool to guarantee population persistence at a super-critical level. This situation,
which typically arises in conservation biology or in upholding endangered stocks, can be
dealt with very easily by applying the limiter control “from below”:

fh,ω(xt) = max{f(xt), h(1 + ωξt)} . (4.11)

The notations are the same as before. The results are shown in Fig. 4.11 for the logistic
map (left column) and the Ricker model (right column). The modified mappings and the
corresponding cobwebbing can be seen in the first row (Fig. 4.11a and e, respectively).
Analogously to the previous case with a limiter from above, a region of the phase plane
is cut off and thus forces the dynamics either on a periodic orbit or, if h ≥ x∗1 , on a
fixed point. This is illustrated in the plots of the asymptotic densities against the limiter
value h in the second row. For very small limiter values, the mean density in the logistic
model decreases (Fig. 4.11b). Anyway, such a small choice of the minimum population
density probably would not prevent a possible extinction as a consequence of demographic
stochasticity. Because of this, a small, but substantial limiter value can be supposed. If
this is set to at least h = 0.05, the mean density is in this case significantly increased
over a wide range. In the Ricker model, the reduction in the mean density cannot be
observed (Fig. 4.11f). Instead, the limiter control immediately enriches the mean density.
In the deterministic case with ω = 0, the limiter control does not have an effect at exactly
h = x∗1 , but already for small noise intensities the curve is blurred. Since the effect of
noise is qualitatively the same as in the preceding sections, the corresponding plots are
not shown for the sake of brevity.
The third and the fourth row of Fig. 4.11 show the variance and the effort of the limiter
control, respectively. The variance of the limiter-controlled logistic map is effectively
reduced in the regions around 0.05 < h < 0.1 and h > 0.15 (Fig. 4.11c). In the Ricker
model, in contrast, the variance increases and is nearly doubled for the limiter value
(Fig. 4.11g) for which the population enrichment is maximal. But already for slightly
larger limiters, the variance soon vanishes. In the reasonable parameter range for h,
the effort for the limiter control does not exceed approximately 0.3 in the logistic model
and 0.1 in the Ricker model (Fig. 4.11d,h). Again, noise blurs the resulting curves and
especially polishes the effort around h = x∗1 .

5. Discussion and conclusions

The aim of this contribution was to study the effect of limiter control in the field of
population biology. Two standard discrete-time models describing the density-dependent
growth of populations, namely the logistic map and the Ricker model, have been controlled
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Figure 4.11: Limiter control “from below” for the logistic (left) and the Ricker model
(right). First row: Asymptotic densities (average in grey), second row: variance, third
row: effort, always against the imiter, and fourth row: cobweb diagram with limiter
h = 0.25 (logistic) and h = 0.1 (Ricker). Paramerer values: r = 4.0 (logistic model),
r = 3.5 (Ricker model). The noise intensities in the third and fourth row are chosen as
ω = 0.0 (thick line), ω = 0.1 (solid line) and ω = 0.2 (dotted line).
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with simple limiters. This control method has been investigated from two points of view:
On the one hand, applying an upper threshold the population densities are restricted not
to exceed levels which may be deleterious with respect to a sustainable development (e.g.
overcrowding or disease transmission). On the other hand, a lower threshold (restocking)
with the aim to maintain populations can have important implications for conservation
biology or ensuring reliable yields.

Constant limiters and even their randomized variants force the dynamics on periodic
orbits or stable fixed points. Note that limiters are not restricted to be interpreted
as a control method. They are also capable of modelling environmental restrictions,
external ceilings against reaching the carrying capacity, predation pressure, immigration
or refuges as outlined in the introduction. Hence, chaotic attractors are unlikely to be
observed in systems with continually hard perturbations. The results presented in this
contribution thus coincide with previous suggestions that chaos in real populations may be
a “fragile process” (Stone, 1993). The application of a lower threshold is closely related
to the control approach studied by McCallum (1992). Actually, the constant feedback
control also yields the stabilization of chaos, but it should be noted that there still remain
parameter ranges in which irregular fluctuations are possible. Furthermore, despite its
simplicity, limiter control supports the experimental finding by Desharnais et al. (2001)
that the introduction of individuals significantly reduces the mean density.

There is a pecularity of limiter control in the logistic map which has important conse-
quences for the management of populations and may be understood as a general warning
against the naive application of unreflected measurement programs. An upper threshold
induces what we have termed the paradox of simple limiter control: The mean den-
sity increases instead of an intuitively expected reduction. There is a similar caveat
for the lower threshold, when the limiter is chosen too small. Management decisions,
which may be well-intended, can thus have strongly opposite impacts. Similar counter-
intuitive dynamics are known in the literature. E.g., an increase of the carrying capacity
destabilizes the population towards densities prone to extinction (paradox of enrichment,
Rosenzweig, 1971), a predator mediates the coexistence of competing prey species which
otherwise would go extinct (Takeuchi and Adachi, 1983), the eradication of invaders that
were threatening endemic species causes a much greater harm to the latter (mesopredator
release, Courchamp et al., 1999).

The Ricker model does not exhibit this paradoxic effect. This can be attributed to the
concavity of the Ricker mapping. The mean population density practically remains con-
stant for a large range of minimum-limiters. For maximum-limiters, the mean density
mainly increases. Preliminary studies show that similar mappings such as the Hassell
model in the chaotic regime obey the same characteristics.

Since the application of sharp limiters may be a bit “brutal”, noise has additionally been
considered, in order to model the cases in which the limiter is subject to fluctuations.
The results turn out to be robust. In many instances, however, a hard limiter control
will be impossible, because one does not have access to the full system or can only cull a
portion of the population. Therefore, future work might take into account soft limiters
(Wagner and Stoop, 2001; Stoop and Wagner, 2003). Overall, limiter control can be a
very effective and at the same time simple tool to control the population, while either
maintaining or enriching its mean density. Numerical investigations, moreover, show that
there is only little effort required in certain, realistic parameter ranges. Furthermore,
the limiter control can contribute to reducing the variance. The decision whether to use
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limiter control thus depends on the specific aim in mind. Each control measure naturally
has to be very carefully assessed.
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