Modellierung von Zink in der Ruhr
Emissionspfade und Belastungsanalyse

Nina Hüffmeyer

Oktober 2007

ISSN Nr. 1433-3805
Inhaltsverzeichnis

1 **Einleitung** ... 12
 1.1 Hintergründe .. 12
 1.2 Ziel der Arbeit .. 13

2 **Grundlagen** .. 14
 2.1 Modellierung mit GREAT-ER .. 14
 2.2 Das Ruhreinzugsgebiet .. 15
 2.3 Zink .. 18
 2.3.1 Allgemeines ... 18
 2.3.2 Richtwerte und Umweltqualitätsziele ... 19

3 **Methoden** .. 21
 3.1 Systemanalyse .. 21
 3.1.1 Systemgrenze .. 21
 3.1.2 Emissionspfade .. 22
 3.1.2.1 Punktkquellen ... 23
 3.1.2.2 Abwasserbehandlung .. 29
 3.1.2.3 Flächenhafte Einträge .. 30
 3.1.3 Austragsprozesse ... 32
 3.2 Modellerweiterung GREAT-ER .. 33
 3.2.1 Ziel des Modells .. 33
 3.2.2 Annahmen und Aufbau .. 34
 3.2.3 Implementation ... 34
 3.3 Anwendung des Modells .. 39
 3.3.1 Definition des Basisszenarios .. 39
 3.3.2 Vergleich der einzelnen Pfade .. 40

4 **Ergebnisse und Diskussion** .. 41
 4.1 Vergleich von Mess- und Modellwerten .. 42
 4.1.1 Plausibilität der Emissionsabschätzungen .. 42
 4.1.1.1 Fracht im Kläranlagenzulauf ... 42
 4.1.1.2 Fracht im Kläranlagenablauf ... 42
 4.1.2 Konzentrationsprofile und Messwerte ... 43
 4.1.2.1 Hauptauf der Ruhr .. 47
 4.1.2.2 Mühne ... 50
 4.1.2.3 Lenne ... 51
 4.1.2.4 Weitere Messwerte an Nebenflüssen .. 54
 4.1.2.5 Gesamtvergleich .. 56
 4.1.3 Schwefelstoffsuntersuchungen .. 57
 4.2 Sedimentation ... 58
 4.3 Vergleich der Emissionspfade .. 61
 4.3.1 Geogene Hintergrundkonzentration aus zinkhaltigen Böden und Eintrag aus ehemaligem Bergbau 62
 4.3.2 Zink-Emissionen aus Haushaltsabwasser ... 62
 4.3.3 Zink-Emissionen aus Abspülung von Düchern ... 63
 4.3.4 Zink-Emissionen aus Abspülung von Straßen .. 64
 4.3.5 Industrielle Direkteinleitungen .. 64
 4.3.6 Abspülung landwirtschaftlich genutzter Flächen ... 65
 4.3.7 Pfadvergleich insgesamt .. 66

5 **Schlussfolgerung und Ausblick** ... 68
6 Literaturverzeichnis.. 70
7 Anhang.. 73

7.1 Anhang A.. 73
 7.1.1 Ermittlung der verzinkten Fläche von Dächern und Regenrinnen .. 73
 7.1.2 Ermittlung der Straßenfläche.. 75

7.2 Anhang B.. 77
 7.2.1 Verschiedene Ablaufraten für die Emissionen von Straßen.. 77
 7.2.2 Talsperren und Stauseen im Ruhreinzugsgebiet.. 78
Abbildungsverzeichnis

Abbildung 2.1: Einzugsgebiet der Ruhr ...16
Abbildung 3.1: Systemdiagramm GREAT-ER (Erweiterungen kursiv)35
Abbildung 4.1: Fließgewässernetz des Ruheinzugsgebiets in GREAT-ER41
Abbildung 4.2: Vergleich der modellierten Kläranlagenemissionen mit offiziellen Daten43
Abbildung 4.3: Geografische Lage der Probenamenstellen der Ruhrängsuntersuchungen des Ruhrverbands im Jahr 2003..44
Abbildung 4.4: Abflüsse an den Pegeln Oeventrop (Ruhr-km 161), Villigst (Ruhr-km 115) und Hattingen (Ruhr-km 57) während des Jahres 2004 [32]45
Abbildung 4.5: Zinkkonzentrationen im Winter und im Sommer der letzten Jahre an der Überwachungsstation Duisburg [nach Ruhrgütereberichten]46
Abbildung 4.6: Simulation der Konzentrationen im Ruheinzugsgebiet mit GREAT-ER47
Abbildung 4.7: Konzentrationsverlauf in der Ruhr nach Messungen des Ruhrverbands 2005 (links) und nach Simulation mit GREAT-ER (rechts) von der Quelle der Ruhr bei Fluss-km 220 bis zur Mündung ..47
Abbildung 4.8: Konzentrationsprofil der Möhne und einzelne Messwerten51
Abbildung 4.9: Konzentrationsverlauf der Lenne nach Messungen des Ruhrverbands 2003 (links, [31]) und nach Simulation mit GREAT-ER (rechts) von der Quelle bei Fluss-km 129 bis zur Mündung ...52
Abbildung 4.10: Frachtbetrachtung für die Lenne ..53
Abbildung 4.11: Vergleich von Messwerten mit Simulationsergebnissen (blau: Messstellen im Ruhrhauptlauf; grün: langjährige Mittelwerte der Nebenflüsse)56
Abbildung 4.12: Einhaltung des Qualitätskriteriums für Zink am Schwebstoff im Ruheinzugsgebiet ...57
Abbildung 4.13: Simulationsergebnisse im Vergleich mit Schwebstoffmessungen58
Abbildung 4.17: Lage der größten Stauseen und Talsperren im Ruheinzugsgebiet60
Abbildung 4.19: Simulationsergebnisse in GREAT-ER für die Einträge aus erzhaltigen Böden62
Abbildung 4.20: Simulationsergebnisse in GREAT-ER für die Einträge aus Privathaushalten ...63
Abbildung 4.21: Simulationsergebnisse für die Einträge aus Dachabläufen63
Abbildung 4.22: Simulationsergebnisse für die Einträge aus Straßenabläufen64
Abbildung 4.23: Simulationsergebnisse für Einträge aus Industrie65
Abbildung 4.24: Simulationsergebnisse für die Einträge aus der Landwirtschaft65
Abbildung 4.25: Gesamtemissionshöhe der einzelnen Pfade im Vergleich66
Abbildung 4.26: Konzentrationsverlauf der einzelnen Pfade in der Ruhr67
Tabellenverzeichnis

Tabelle 2.1: ökotoxikologische Daten zu Zink [10] ...20
Tabelle 3.1: Zinkfrachten aus Grubenwassereinleitungen im Jahr 200429
Tabelle 3.2: Parameter zur Berechnung der Emissionen in Kläranlagen35
Tabelle 4.1: Zinkfrachten im Kläranlagenzulauf: Differenzierung nach verschiedenen
Abwasserteilströmen ..42
Tabelle 4.2: Abflüsse an den Untersuchungstagen und Hauptzahlen der Lennepegel [31]...53
Tabelle 7.1: Ablaufraten von Straßen aus verschiedenen Untersuchungen [17]78
Tabelle 7.2: Talsperren und Stauseen im Ruhreinzugsgebiet [24] ..78
Zusammenfassung

Im Rahmen dieser Arbeit wurde für das Ruhreinzugsgebiet zunächst eine Analyse und Quantifizierung aller Zink eintragenden und austragenden Prozesse durchgeführt. Außerdem wurde exemplarisch ein Vergleich der verschiedenen Eintragspfade vorgenommen, bei dem vor allem die regionalen und lokalen Hauptbelastungsquellen identifiziert werden sollten.

Als einziger austragender Prozess spielt die Sedimentation eine entscheidende Rolle. Rund die Hälfte des in die Ruhr gelangenden Zinks findet sich in gelöster Form, die andere Hälfte ist partikulär gebunden und kann durch das Absinken der Partikel sedimentieren. Dabei sind vor allem die im Ruhreinzugsgebiet zahlreich vorhandenen Seen und Talsperren von Bedeutung. Während die Sedimentation von Zink in Flüssen eher niedrig ist, stellen Seen und Talsperren bedeutende Senken dar.

Ein Vergleich der Pfade zeigte zunächst, dass die emittierten Mengen in ihrer Zusammensetzung deutlich abweichen von den tatsächlich in die Gewässer geleiteten Mengen. Dies liegt an der Art und Weise der Einträge. Während die diffusen Emissionen in
Summary

An analysis and quantification of the main emission processes responsible for elevated zinc concentrations in surface waters has been performed for the catchment of the German river Ruhr. The software-tool GREAT-ER has been chosen for modelling. GREAT-ER calculates the concentration profile of a river based on the geo-referenced data of emitted loads, flow rates and degradation processes. An exemplary comparison of the different input pathways was conducted to identify the most important regional and local emission sources.

A number of different input pathways has to be considered when assessing the origin of zinc concentrations in surface waters. Besides geogenic input resulting from zinc-rich soils or former ore mines anthropogenic influences such as washout of zinc from zinc roof surfaces and zinc-coated pipes, abrasion of zinc-rich particles from tyres, brakes and street surfaces, diffuse emissions from agriculture and industrial inputs occur.

The major part of the old ore mines can be found in the eastern part of the Ruhr catchment, whereas the western part is dominated by a dense population. Thus, the importance of the single emission pathways might differ locally. The emitted zinc enters the surface waters either by point or diffuse sources and is then transported downstream along the course of the rivers. Sedimentation is the only degradation process of major importance. Approximately half of the zinc emitted to the Ruhr is dissolved; the other half is bound to particles and can therefore be transported into the sediment by sinking of suspended particles. This is especially important for the numerous lakes and water reservoirs in the Ruhr catchment. As sedimentation is rather low in rivers, lakes and reservoirs are the only important sinks.

A basic scenario has been defined assuming long-term average flow rates, average run-off rates etc. Scenario results have been compared to measured values and show comparable results. In the upper Ruhr high concentration peaks can be observed due to high inputs from zinc-rich soils. Because of dilution the concentration level quickly reduces to lower concentrations of about 20-30 µg/L, which then remains nearly constant along the downstream part of River Ruhr.

The fraction of the initial emissions entering the river system is different for the single emission pathways. In case of diffuse emissions (e.g. from agriculture) the total emission load is discharged into the river, while point emission sources are often partly reduced by sorption and/or degradation in sewage treatment plants (STPs) or rainwater basins. The zinc removal efficiency of STPs is estimated to be 74% on average.

The respective reduction of the total zinc entering surface waters is strongly dependent on the sewer system. STPs operated as a combined sewer system also reduce emissions from runoff originating from washing off of roof and street surfaces, whereas in a separate sewer system such runoff is drained almost untreated into the rivers resulting in much higher zinc
loads. Furthermore, the comparison of the input pathways showed a very different regional importance of single emission sources. While concentrations in the upper part of the Ruhr are dominated by zinc loads due to inputs from zinc-rich soils and former mining, the contribution from other sources such as households, roofs and streets increases in the downstream part of the Ruhr.
1 Einleitung

1.1 Hintergründe

Das in die Gewässer gelangende Zink kann entweder in gelöster Form vorliegen oder an Partikel gebunden sein. Diese Partikel werden zum Teil mit dem Wasser transportiert oder sedimentieren. Da Schwermetalle wie Zink nicht abbaubar sind, ist neben der Aufnahme von Zink durch Organismen die einzige Möglichkeit der Konzentrationsreduktion die Sedimentation des an Partikel gebundenen Zinks. Im Sediment erfolgt dann eine Akkumulation, die zu hohen Werten führen kann.

An den relevanten Stellen, wo hohe Konzentrationen zu einer Schädigung der Ökosysteme führen können, sollen nun in den Maßnahmenprogrammen der Wasserrahmenrichtlinie Handlungsalternativen vorgeschlagen werden, die die Gewässerzustände verbessern. Zur Ergreifung geeigneter Maßnahmen müssen natürlich zunächst alle relevanten Belastungsquellen identifiziert und quantifiziert werden.
1.2 Ziel der Arbeit

In dieser Arbeit soll dabei nur die Gesamtkonzentration betrachtet werden. Da der Schwerpunkt auf der Betrachtung der Emissionspfade und den eingetragenen Mengen liegt, wird nicht unterschieden zwischen gelöstem und partikulär gebundenem Zink.

Als Untersuchungsgebiet wurde das in Nordrhein-Westfalen befindliche Ruhreinzugsgebiet ausgewählt. Hier sind zum einen geogene Einflüsse zu finden, als Zentrum einer stark industriell genutzten als auch dicht besiedelten Gegend sind jedoch auch alle Arten von anthropogenen Einflüssen vertreten.
2 Grundlagen

2.1 Modellierung mit GREAT-ER

GREAT-ER ist ein Softwaretool zur Modellierung der Ausbreitung von chemischen Substanzen in Fließgewässern und steht für „Geography-referenced Regional Exposure Assessment Tool for European Rivers“. GREAT-ER kombiniert ein GIS (Geografisches Informationssystem) mit chemischen Modellen zur Berechnung und Modellierung des Verbleibs von Substanzen in Gewässern. So können Gewässerbelastung und -qualität modelliert und auch visualisiert werden. Durch den geografischen Bezug aller Daten können dabei punktuelle Belastungen analysiert und die wichtigsten Emittenten identifiziert werden.

Die Software wurde bereits bei der Modellierung von diversen Substanzen in verschiedenen Flusseinzugsgebieten eingesetzt [1]. Dabei wurden jedoch immer Substanzen gewählt, die ausschließlich aus privaten Haushalten oder industriellen Einleitungen emittiert werden. Für Schwermetalle wie Zink wird hier eine Erweiterung benötigt, die im nächsten Kapitel näher erläutert wird.

GREAT-ER geht von kontinuierlichen Einträgen aus. Dabei kann für bestimmte Parameter die zeitliche Variabilität und/oder Unsicherheit durch Eingabe einer Wahrscheinlichkeitsverteilung anstelle eines deterministischen Wertes abgebildet werden.
Für jede Simulation wird dann aus der angegebenen Verteilung ein Wert gezogen, mit dem das Modell rechnet. Mit der Monte Carlo – Methode, bei der beliebig viele dieser Durchläufe hintereinander durchgeführt werden, kann so die Spannweite der Konzentrationen für die gegebenen Verteilungen berechnet werden.

2.2 Das Ruhreinzugsgebiet

Die Ruhr ist mit Ausnahme des nördlichen Randes Teil des Rheinischen Schiefergebirges. Im nördlichen Bereich finden sich überwiegend Sandstein, Tonschiefer und Steinkohle, im Rheinischen Schiefergebirge finden sich zusätzlich Siltsteine, Quarzite und Grauwacken, aber auch große Kalkvorkommen z.B. bei Balve und Brilon [3].

Landwirtschaftliche Nutzung findet sich vor allem am nördlichen Rand des Einzugsgebietes [3]. Außerdem dient diese Region auch als Erholungsraum. So wird z.B. eine der größten Talsperren im Ruhreinzugsgebiet, die Möhnetalsperre, als Freizeitraum zum Schwimmen genutzt.
Abbildung 2.1: Einzugsgebiet der Ruhr

Zu Beginn des vorigen Jahrhunderts wurden aufgrund von nicht vorhandenen Kläranlagen Stauseen zur Reinhaltung des Wassers (Flusskläranlagen) gebaut. Durch die Verringerung der Fließgeschwindigkeit und die somit längere Laufzeit des Wassers setzen sich absetzbare Stoffe ab. Auch heute dienen die Stauseen noch als Feinreinigungsstufe und helfen bei der

Doch nicht nur für die Trinkwasserversorgung spielt die Ruhr eine wesentliche Rolle. Die Region „Ruhrgebiet“, besonders der westliche Teil des Einzugsgebiets, stellt ein wirtschaftliches Zentrum in Deutschland und Europa dar und ist damit sowohl stark industriell geprägt als auch dicht besiedelt. Somit spielt die Ruhr auch eine wesentliche Rolle bei der Entsorgung von kommunalen und industriellen Abwässern [6]. Im Ruhreinzugsgebiet befinden sich 221 Direkteinleiter, die jährlich 70 Mio. m³ Abwasser einleiten [2].

In den Kläranlagen wird nicht nur Abwasser aus Haushalten oder Industrie behandelt, sondern auch von versiegelten Flächen ablaufendes Regenwasser. Insgesamt weist das Ruhreinzugsgebiet eine Fläche von 4.490 km² auf. Rund 18% dieser Fläche sind baulich geprägte Flächen, Siedlungsflächen oder verkehrsrelevante Flächen. Für den Niederschlag abflussrelevant sind 47.600 ha, also 11% der Gesamtfläche. Die Entwässerung dieser Fläche erfolgt bei 29.353 ha im Mischsystem. Dabei werden häusliche Abwässer und Regenwasser in einem gemeinsamen Kanal in die Kläranlage geleitet und dort auch gemeinsam behandelt. Da das Regenwasser stoßweise und u.U. in so hohen Mengen anfällt, dass die Kapazität der Kläranlage überschritten wird, erfolgt gelegentlich eine so genannte Mischwasserentlastung, bei der das überschüssige Abwasser direkt und weitgehend unbehandelt in das angeschlossene Gewässer eingeleitet wird. Da
Haushaltsabwasser und Regenwasser im zuführenden Kanal bereits gemischt werden, wird hierbei also nicht nur Regenwasser eingeleitet, sondern auch Haushaltsabwasser. Insgesamt erfolgt die Entwässerung zu einem Anteil von 70-80% nach dem Prinzip der Mischkanalisation [5]. Der entlastete Volumenstrom lag 2004 bei 109 Mio. m³ [2].

Schließlich existieren noch weitere versiegelte Flächen, wie bspw. abflusswirksame Straßenflächen, die außerhalb von Ortschaften liegen und nicht über die öffentliche Kanalisation entwässert werden. Das ablaufende Regenwasser wird entweder direkt in einen Vorfluter abgeleitet oder versickert.

2.3 Zink

2.3.1 Allgemeines

Zink ist ein Schwermetall, welches überall auf der Welt zu finden ist. Es ist als Spurenelement zwar lebensnotwendig, kann in zu hohen Dosen jedoch auch zu schweren Schädigungen von Mensch und Umwelt führen. Daher muss darauf geachtet werden, dass die Ökosysteme nicht zu sehr durch Zink belastet werden.

2.3.2 Richtwerte und Umweltqualitätsziele

Da die Humantoxizität von Zink eher gering ist, besteht kein Grenzwert für die Zinkbelastung von Trinkwasser. Der frühere Grenzwert zur Trinkwasserbelastung von 5 mg/l resultierte ebenfalls nicht aus gesundheitlichen Gründen, sondern wurde lediglich zur Vermeidung von Geschmacksbeeinträchtigungen festgelegt [7].

Die Wirkung von Zink auf Umwelt und Lebewesen hingegen ist schon bei deutlich niedrigeren Konzentrationen zu bemerken. So wurde beispielsweise im Silberbach und in der Hundem bei höheren Konzentrationen ein deutlich reduziertes Artenspektrum beobachtet, was dann zur Schädigung der Benthalbiozönose führte [3].

Die LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser) legt daher als Qualitätskriterium für Gewässer eine Zinkkonzentration von 400 mg/kg und für die Konzentration von Schwebstoffen und Sedimenten 200 mg/kg fest und es werden regelmäßige Untersuchungen durchgeführt, die die Wasserqualität überprüfen. Die Qualitätsnorm der Wasserrahmenrichtlinie liegt bei 800 mg/kg [8].

Vom österreichischen UBA wurde 2002 ein Grenzwert von 7,6 µg/l vorgeschlagen, der gleichzeitig auch als PNEC angegeben wurde. Dieser Grenzwert ermittelte sich dabei aus der Summe der vom LAWA angegebenen Hintergrundkonzentration (1 µg/l) und der „maximum permissible addition‘ (MPA, 6,6 µg/l). Als MPA wurde der 5-Perzentil-Wert der log-
logistic/log-normal Verteilung der „species sensitivity distribution“ (Laboruntersuchungen) angenommen [9].

Tabelle 2.1 zeigt eine Übersicht zu verschiedenen ökotoxikologischen Daten von Zink.

<table>
<thead>
<tr>
<th></th>
<th>Zink</th>
<th>CAS: [7440-66-6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algen Wachstumshemmat</td>
<td>250 µg/l [ZnSu, EC₅₀, 0,17 d, Scenedesmus, Photosynthese] [067]</td>
<td></td>
</tr>
<tr>
<td>Daphnien, akute Toxizität</td>
<td>1 mg/l [EC₅₀, 24 h] [067]; 1,17 mg/l [LC₅₀, 24 h] (2) [067]</td>
<td>0,56 mg/l [ZnSu, EC₅₀, 48 h] (3) [067]</td>
</tr>
<tr>
<td>Fische, akute Toxizität</td>
<td>< 1 mg/l [ZnSu, LC₅₀, 48 h, Forelle] (4) [067]</td>
<td>2,4 mg/l [ZnSu, LC₅₀, 96 h, Forelle] [067]</td>
</tr>
<tr>
<td>Fische, life cycle test</td>
<td>78-145 µg/l [MATC, 90 d, Elritze, ELEJ, Eizerbrechlichkeit] [063]</td>
<td>26-51 µg/l [MATC, 30 d, Kärpfling, Wachstum] [063]</td>
</tr>
<tr>
<td>Wahrnehmungsgrenze [mg/l]</td>
<td>3 mg/l [Geschmacksbeeinträchtigung, Aussehen] [007]</td>
<td></td>
</tr>
<tr>
<td>Nachweisgrenze [µg/l] (Methode)</td>
<td>5 µg/l [142]</td>
<td>20 µg/l (AAS) [115]</td>
</tr>
</tbody>
</table>

Tabelle 2.1: ökotoxikologische Daten zu Zink [10]
3 Methoden

3.1 Systemanalyse

3.1.1 Systemgrenze

Das Ziel dieser Untersuchung ist zum einen die Modellierung der Zinkkonzentrationen in der Ruhr, zum anderen die Analyse und georeferenzierte Quantifizierung der Eintragspfade und die Untersuchung ihrer jeweiligen Relevanz für die Konzentrationen in der Ruhr. Dazu werden Modellrechnungen mit GREAT-ER durchgeführt.

Zunächst müssen alle wesentlichen Eintrags- und Austragspfade identifiziert und auch quantifiziert werden, um im Anschluss an eine Modellierung auch eine Evaluierung der wichtigsten bzw. quantitativ größten Pfade vornehmen zu können. So können Anhaltspunkte gewonnen werden, welche Maßnahmen zur Frachtreduktion sinnvoll sein könnten und wo diese am günstigsten einzusetzen sind.

Die Systemgrenze stellt das Einzugsgebiet der Ruhr dar. Dabei werden der Hauptlauf der Ruhr sowie alle Nebenflüsse und deren Einzugsgebiete betrachtet. Zur Ermittlung der Zinkbelastungen müssen verschiedene Quellen betrachtet werden:

- anthropogene Quellen (Industrie, Abwasser, Schmutzwasser):
 Die industrielle Nutzung und die dichte Besiedlung der Flächen im westlichen Teil des Ruhreinzugsgebietes führen hier zu einer größtenteils anthropogenen Belastung der Ruhr.
- geogene Gegebenheiten (natürliche Hintergrundkonzentration):
 Dies ist hauptsächlich im östlichen Teil des Ruhreinzugsgebiets relevant, wo bedeutende Erzlagerstätten zu finden sind.
- landwirtschaftliche Nutzung:

Zur Modellierung all dieser Einflüsse werden folgende Informationen benötigt:

- Ort der Einleitung
- Höhe der Einleitung
- Durchfluss am Ort der Einleitung
Während bei Messungen und Analysen der Wasserqualität in der Regel Konzentrationen angegeben werden, ist für die Analyse der Relevanz der Eintragspfade die Betrachtung der Frachten wichtig, die aus den Konzentrationen über die Durchflüsse umgerechnet werden:

\[F = \frac{Q \cdot C \cdot 31.536.000}{1.000.000} \]

wobei:
- \(F \) = Fracht [kg/a]
- \(Q \) = Durchfluss [m³/s]
- \(C \) = Konzentration [mg/m³]
- 31.536.000 = Einheitenfaktor (zeitlich, s/a)
- 1.000.000 = Einheitenfaktor (Konzentration, mg/kg)

Als Modellierungstool wird die Software GREAT-ER eingesetzt (siehe Kapitel 2.1).

3.1.2 Emissionspfade

3.1.2.1 Punktquellen

Punktquellen sind zum einen kommunale Kläranlagen, zum anderen aber auch industrielle Einleiter und Grubenwassereinleitungen. Während die durch Industrie und Grubenabwasser entstehenden Belastungen nur eine Ursache haben, setzen sich die in kommunalen Kläranlagen auftretenden Zinkfrachten aus verschiedenen Quellen zusammen. Im Zusammenhang damit wurden die folgenden Pfade als für Einleitungen in Kläranlagen relevant identifiziert:

- Trinkwasser/Haushaltsabwasser
- Dachabläufe
- Straßenabläufe

Da die Berechnung der über diese Pfade emittierten Fracht pro Zeiteinheit jeweils von einem Parameter wie der Abschwemmrate und einer Bezugsgröße, z.B. der benetzten Fläche, abhängt, ergibt sich als Basis für jeden einzelnen Pfad die folgende Gleichung:

\[F = r_{pf} \times BG_{pf} \]

wobei:

- \(F \) = Fracht
- \(r_{pf} \) = pfadspezifische Emissionsrate pro Einheit der Bezugsgröße
- \(BG_{pf} \) = pfadspezifische Bezugsgröße

3.1.2.1.1 Haushaltsabwasser

Haushaltsabwasser besteht im Wesentlichen aus dem in Haushalten verbrauchten Trinkwasser. Dieses Trinkwasser ist zum einen bereits mit einer gewissen Fracht belastet, zum anderen wird durch kosmetische Produkte und Ausscheidungen noch weiteres Zink hinzugefügt.

E. Hamel berichtet von einer Trinkwasserbelastung von 250 µg/l [12], während im niederländischen SPEED-Bericht [13] eine Trinkwasseremission von 1,83 g/(cap*a) angenommen wird, was bei einem Wasserverbrauch von 160 l/(cap*d) einer Konzentration von 31,3 µg/l entspricht. Hier bleibt zu untersuchen, ob in den Niederlanden evtl. andere Materialien für die Rohrleitungen eingesetzt werden.

Die aus den Haushalten emittierte Zinkfracht hängt wesentlich von der verbrauchten Menge Trinkwasser ab und berechnet sich aus:

\[
F_{TW} = \frac{C_{TW} \times \text{Consump}_{TW} \times 365}{1.000.000}
\]

wobei:
- \(F_{TW} \) = Fracht im Trinkwasser [g/(cap*a)]
- \(C_{TW} \) = Konzentration im Trinkwasser [µg/l]
- \(\text{Consump}_{TW} \) = Trinkwasserverbrauch pro Person und Tag [l/(cap*d)]
- 1.000.000 = Einheitenfaktor (g/µg)

Nimmt man einen mittleren Wasserverbrauch von 160 l/(cap*d) an, ergibt sich bei einer Konzentration von 120 - 250 µg/l eine Gesamtfracht pro-Kopf von 7 – 14,6 g/(cap*a)

Weitere Einflüsse bestehen durch die Ausscheidung von Zink, welches mit der Nahrung aufgenommen wurde oder durch die Nutzung von zinkhaltigen Produkten und Kosmetika. Bei einer mittleren täglichen Aufnahme von 9 – 12 mg (≈ 3,3 – 4,4 g/a) kann unter der Annahme von Fliessgleichgewicht von einer Ausscheidung in gleicher Höhe ausgegangen werden [13]. Für die Emission von Zink aus kosmetischen Produkten ergibt sich nach RAR Zink ein Eintrag von 1,8 mg/(cap*d) in das Haushaltsabwasser [13].

Insgesamt entsteht damit ein Pro-Kopf-Verbrauch von 11 – 19,7 g/(cap*a). Im Mittel sind dies bei einer Standardabweichung von 2 \(\sigma \) also 15,4 ± 2,2 g/(cap*a). Da die in Haushalten entstehenden Abwässer zu 100% in die Kanalisation eingeleitet werden, ergibt sich hier folgende Gleichung zur Berechnung der emittierten Zinkfracht:
\[F = \frac{EW \times F_{TW} \times 365}{1.000} \]

wobei:
- \(F \) = Fracht [kg/a]
- \(EW \) = an die Kläranlage angeschlossene Einwohnerzahl [cap]
- \(F_{TW} \) = Zinkverbrauch pro Person und Tag[g/(cap*Tag)]

3.1.2.1.2 Dachabläufe

Verschiedene Abschwemmraten wurden in vier unabhängigen Messreihen ermittelt. Als Mittelwert dieser Messreihen, die überwiegend in urbanen Gebieten durchgeführt wurden, ergab sich nach dem UBA-Bericht eine Abschwemmrate von 3,0 g/(m\(^2\)a) für Zinkflächen [3].

Im „first flush“ eines Regenereignisses wurden Zinkkonzentrationen von 5,6 bis 25,5 mg/l beobachtet [15], wobei das Regenwasser selbst bereits eine Zinkkonzentration von 0,2 mg/l (< 4%) aufwies. Rund 97% des Zinks im Dachablauf lagen in gelöster Form vor [15].

Zusätzlich entstehen Zinkkonzentrationen im Dachablauf durch Deposition. Dies betrifft alle Dachflächen und wird mit einer Höhe von 23 mg/(m\(^2\)a) angenommen [16]. Zu beachten ist außerdem die Nähe von stark befahrenen Straßen wie Autobahnen oder Zink emittierenden Unternehmen wie Kraftwerken, da durch diese Einflüsse die atmosphärische Deposition lokal eine Rolle spielen könnte [15]. Dies soll in dieser Arbeit jedoch nicht näher betrachtet werden.

Die Bezugsgröße zu dieser Abschwemmrate ist die benetzte Zinkfläche, die an die jeweilige Kläranlage angeschlossen ist. Erläuterungen zur Abschätzung dieser sind im Anhang zu finden.

Im Gegensatz zur Zinkemission aus der Trinkwasserversorgung muss hier nun beachtet werden, dass nicht der gesamte Anteil der Emissionen die Kanalisation erreicht. So kann
z.B. nach Hullmann von einer Versickerungsrate von rund 15 % ausgegangen werden [7].

Damit ergibt sich zur Berechnung der in der Kanalisation aufgenommenen Zinkfracht folgende Gleichung:

\[
F = \frac{A_D \times r_D \times f_D}{1.000}
\]

wobei:

- \(F\) = Fracht [kg/a]
- \(A_D\) = Dachfläche [m²]
- \(r_D\) = Ablaufrate [g/(m²*a)]
- \(f_D\) = in Kläranlage aufgenommener Anteil

3.1.2.1.3 Straßenabläufe

Im Straßenverkehr kann Zink durch die folgenden Quellen emittiert werden:
- den Abrieb von Reifen
- den Abrieb von Bremsen
- Straßenabrieb
- Korrosion verzinkter Produkte in Fahrbahnnähe (Straßenschilder, Leitplanken etc.)

Wie auch bei durch Dachabläufe entstehenden Emissionen ist bei Straßenabläufen der Anteil zu betrachten, der tatsächlich die Kanalisation erreicht. Während ein gewisser Teil der

Betrachtet wird die gesamte, innerörtliche Straßenfläche und eine mittlere Abschwemmrate, die alle oben aufgeführten Emissionen beinhaltet. Nun werden zum einen die Emissionen modelliert, die über die Mischkanalisation in die Kläranlage gelangen. Außerdem werden die Straßenflächen in der Trennkanalisation modelliert, für die angenommen wird, dass die Abläufe unbehandelt in ein Gewässer abgeleitet werden. Direkte, unbehandelte Einleitungen von außerörtlichen Straßenflächen können aufgrund von mangelnden Informationen nicht in die Modellierung einbezogen werden. Die Modellierung der versickerten Straßenabwässer ist im Rahmen der Fließgewässermodellierung nur insofern interessant, als dass die durch
Versickerung entstehende Bodenbelastung zu diffusen Einträgen durch Korrosion, Drainage usw. führen kann. Der versickerte Anteil des Regenabwassers wird daher hier nicht weiter modelliert.

Es ergibt sich die folgende Formel zur Berechnung der Gesamtemissionen:

\[
F = \frac{A_s \, r_s \, f_s}{1.000}
\]

wobei:

- \(F\) = Fracht [kg/a]
- \(A_s\) = Straßenfläche [m²]
- \(r_s\) = Ablaufrate [g/(m²*a)]
- \(f_s\) = der die Kläranlage erreichende Anteil (90 %)

Zu beachten ist für die Regenwasserabläufe von Dächern und Straßen ebenfalls die atmosphärische Deposition, wobei Partikel auf der Straße abgelagert und dann abgespült werden [17]. Da die Abschwemmrate aus Messwerten abgeleitet wurde, wird jedoch angenommen, dass die Depositionsrate bereits in den Abschwemmraten enthalten ist.

Für die Schwankungen der Emissionen aus Straßenablauf gilt ähnliches wie für die Emissionen von Dächern. Auch hier kann keine Aussage über Varianzen getroffen werden.
3.1.2.1.4 Industrielle Direkt- und Indirekteinleitungen

3.1.2.1.5 Sümpfungswassereinleitungen

<table>
<thead>
<tr>
<th>Einleitungen 2004</th>
<th>Gewässer</th>
<th>Zinkfracht kg/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedlicher Nachbar</td>
<td>Ruhr</td>
<td>200</td>
</tr>
<tr>
<td>Erzgrube Meggen</td>
<td>Lenné</td>
<td>2.600</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Zinkfrachten aus Grubenwassereinleitungen im Jahr 2004

3.1.2.2 Abwasserbehandlung

Die in Regenabläufe und Schmutzwasser emittierte Zinkfracht gelangt zum Großen teil in die Kanalisation und damit in eine Kläranlage. Hier erfolgt eine Behandlung des Abwassers, wodurch unerwünschte Substanzen weitgehend entfernt und die Gewässerbelastung möglichst gering gehalten werden soll. Im Fall von Zink findet die Elimination im Wesentlichen durch eine Reduktion der Partikelfracht in den verschiedenen Absetzbecken und der biologischen Reinigungsstufe statt. Im behandelten Abwasser erreicht man bereits Eliminationsraten von bis zu 84 % [12]. Allerdings ist hier zu beachten, dass bei weitem nicht alles Abwasser, welches mit Zink belastet ist, auch behandelt wird.
In Deutschland gibt es zum einen die Mischkanalisation, zum anderen die Trennkanalisation (s. Kapitel 2.2). Bei der Trennkanalisation werden Regenüberläufe in den Kläranlagen vermieden, es kommt also nicht mehr zur zeitweisen Einleitung ungeklärter Haushaltsabwässer, allerdings erfolgt dauerhaft eine höhere Belastung des Gewässers durch Einleitung des ungesäuberten Regenwassers. Bei der Mischkanalisation wird das Regenwasser zum Teil vor Erreichen der Kläranlage in einen Vorfluter abgeleitet, zum Teil gelangt das Regenwasser jedoch mit in die Kläranlage und wird dort behandelt. Die Berechnung der Gewässerbelastung ergibt sich also in Abhängigkeit des Kläranlagentyps:

Mischwasserkanalisation:
\[
\text{Fracht} = \sum (\text{Fracht}_i \cdot f_{\text{Treated}} \cdot \text{Eliminationsrate}) + \sum (\text{Fracht}_i \cdot (1 - f_{\text{Treated}})),
\]
wobei \(\text{Fracht}_i \) hier die Emissionen der einzelnen Pfade darstellt und \(f_{\text{Treated}} \) der behandelte Teil des jeweiligen Abwasserstroms ist.

Trennkanalisation:
\[
\text{Fracht} = \sum (\text{Fracht}_i \cdot \text{Eliminationsrate}) + \sum (\text{Fracht}_j),
\]
wobei \(\text{Fracht}_i \) Haushaltsabwasser und Indirekteinleiter darstellt und \(\text{Fracht}_j \) das unbehandelte Regenwasser aus Dach- und Straßenabläufen erfasst.

Unter der Annahme von Brombach/Wöhrle (1997), dass die jährliche, tatsächlich wirksame Entlastungsdauer der Durchlaufbecken von Kläranlagen in der Mischkanalisation 230 h beträgt, ergibt sich ein Eintrag von ungeklärtem Haushaltsabwasser in Höhe von 2,6% des Gesamthaushaltsabwassers [25]. Für Regenwasser liegen die Entlastungsraten bei über 40% [37].

3.1.2.3 Flächenhafte Einträge

3.1.2.3.1 Landwirtschaft

\[Zn = \frac{PE \cdot Zn_{SS}}{1.000} \]

wobei:
- \(Zn \) = Auswaschungsrate von Zink [g/(ha*a)]
- \(PE \) = überschüssiger Niederschlag [m³/(ha*a)]
- \(Zn_{SS} \) = Zinkkonzentration der Bodenlösung [mg/ m³]

3.1.2.3.2 Zinkhaltige Böden

Der Ruhrverband berichtet von einer übermäßigen Belastung der im Unterlauf der Ruhr befindlichen Nebenflüsse Neger, Elpe, Valme und Nierbach. Auch die Hundem, Olpe und Silberbach, Nebengewässer der Lenne, sind durch stärker belastet. Es wurden sehr hohe
Konzentrationen gemessen, die vermutlich darauf zurückzuführen sind, dass die Flüsse Erzlagerstätten durchfließen und hier Zink auslösen.

Die Differenz aus gesamter Fracht und Eintrag aus Grundwasserzufluss wurde dann als Punkteintrag in die Modellierung einbezogen. Es bestehen an diesen Flüssen keine weiteren Einleitungen, sodass davon ausgegangen werden kann, dass die in den Mündungsbereichen gemessenen Konzentrationen nahezu vollständig auf die Einträge durch Auswaschung und Minenabwässer zurückzuführen sind.

3.1.3 Austragsprozesse

Der einzige für Zink relevante Austragsprozess ist die Sedimentation. Sedimente bilden die für Zink wichtigste Senke in aquatischen Systemen. Dabei spielen verschiedene Teilprozesse eine Rolle wie z.B. Adsorption, Absorption oder auch Komplexierung. Auch die Beschaffenheit der Sedimente hat eine große Wirkung auf die Verteilung bzw. den Transport von Zink zwischen Wasserphase und Sedimenten. Um eine Aussage über die Bioverfügbarkeit oder über das Verhalten und den Verbleib von Zink in Fließgewässern treffen zu können, muss diese Verteilung beschrieben werden [12], [16].

Dafür muss zum einen die Verteilung zwischen gelöster und partikulär gebundener Form des Zinks bekannt sein, zum anderen muss außerdem die Sedimentationsrate der Schwebstoffe gegeben sein. Letztlich muss auch der Schwebstoffgehalt des Wassers bekannt sein, der entscheidend ist für die Menge des Zinks, das sorbiert wird, um daraus den sedimentierten Teil des Zinks berechnen zu können.

Der Verteilungskoeffizient K_d [l/kg] beschreibt die mittlere Verteilung von Zink zwischen Wasserphase und Feststoff und wird aus der gesamten sorbierten Metallkonzentration C_{sorb} [mol/kg] und der totalen gelösten Konzentration $C_{gelöst}$ [mol/l] ermittelt:

$$K_d = \frac{C_{sorb}}{C_{gelöst}}$$
Dabei bezieht sich der K_d auf bestimmte Bedingungen, unter denen er gemessen wurde, wie z.B. Temperatur usw. und beschreibt die Verteilung unter diesen Bedingungen. Eine Übertragung des Wertes auf andere Bedingungen setzt voraus, dass die Einflussgrößen bekannt sind. So wurde z.B. eine starke Korrelation zwischen dem K_d und dem Anteil an Karbonaten nachgewiesen, was wohl auf den Einfluss von Karbonaten auf den pH-Wert zurückzuführen ist. Auch ein Zusammenhang zwischen TOC-Anteil und K_d konnte nachgewiesen werden, was aus der Komplexierung von Zink mit TOC-Bindungsstellen unter neutralen oder alkalischen Bedingungen resultiert. Fe-Mn-Oxide haben ebenfalls einen starken Einfluss auf die Verteilung [12], [16].

Der K_d beschreibt die mittlere Verteilung des Zinks zwischen Schwebstoff und Wasser. Aus der Schwebstoffkonzentration C_{Schweb} des Wassers ergibt sich dann der tatsächlich sorbierte Teil des Zinks f_{sorb}, der dann an die Partikel gebunden sedimentieren kann.

$$ f_{\text{sorb}} = \frac{1}{1 + K_d \cdot C_{\text{Schweb}}} $$

Zur Ermittlung der sedimentierenden Zinkfracht muss nun noch bekannt sein, welche Menge der Schwebstoffe sedimentiert. Die Sedimentationsrate k_{sed} kann dann aus dem Sedimentwachstum abgeschätzt werden. Die Sedimentationsrate $k_{\text{sed,Zn}}$ für Zink ergibt sich also aus:

$$ k_{\text{sed,Zn}} = k_{\text{sed}} \cdot f_{\text{sorb}} $$

3.2 Modellerweiterung GREAT-ER

3.2.1 Ziel des Modells

Das Ziel der Fließgewässermodellierung ist unter anderem die georeferenzierte Berechnung der zu erwartenden Substanzkonzentrationen und die Bestimmung der Wasserqualität. Mit Hilfe der oben analysierten Emissionspfade und deren Parametrisierung soll eine Vorhersage für Zinkkonzentrationen in der Ruhr getroffen werden, die dann mit gemessenen Werten verglichen werden sollen, um eventuelle Auffälligkeiten und Unstimmigkeiten zu identifizieren. So kann das Modell kalibriert werden. Auf Basis dieser Modellierung soll dann eine Bewertung der quantitativen Einflüsse der Emissionsquellen vorgenommen werden, um eine Aussage über die Signifikanz einzelner Prozesse zu erlangen.
3.2.2 Annahmen und Aufbau

3.2.3 Implementation

Emissionsmodell

Es existierte bereits eine Emissionsquelle, die die Emissionen auf Basis der an die Kläranlagen angeschlossenen Einwohner und eines Pro-Kopf-Verbrauchs berechnete. Hierdurch können für Zink die Emissionen im Haushaltswasser erfasst werden. Zusätzlich dazu waren für Punktquellen nun noch die Flächen-Verbräuche, also die Emissionen aus Dach- und Straßenabläufen, im Emissionsmodell zu berechnen. Der Bezugszeitraum ist dabei immer ein Jahr.

<table>
<thead>
<tr>
<th>Fracht</th>
<th>Bezugsgröße</th>
<th>Einheit der Bezugsgröße</th>
<th>Parameter</th>
<th>Einheit des Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIout_house</td>
<td>Pop</td>
<td>cap</td>
<td>Consumption</td>
<td>kg/(cap*a)</td>
</tr>
<tr>
<td>PHIout_roof</td>
<td>Roof</td>
<td>m²</td>
<td>Roofrunoff</td>
<td>kg/(m²*a)</td>
</tr>
<tr>
<td>PHIout_street</td>
<td>Street</td>
<td>m²</td>
<td>Streetrunoff</td>
<td>kg/(m²*a)</td>
</tr>
<tr>
<td>flux_nondom</td>
<td>-</td>
<td>-</td>
<td>flux_nondom</td>
<td>kg/a</td>
</tr>
<tr>
<td>flux_runoff</td>
<td>-</td>
<td>-</td>
<td>flux_runoff</td>
<td>kg/a</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Parameter zur Berechnung der Emissionen in Kläranlagen

Kläranlagenmodell

Die Berechnung der Frachten F_i erfolgt für die Pfade Haushaltsabwasser und Indirekteinleitung (beides jeweils mit vollständiger Behandlung) nach:

$$F_i = F_i * (1 - r_{WWTP}) ,$$

wobei r_{WWTP} die Eliminationsrate in der Kläranlage darstellt.

Für die Frachten F_i aus der Einleitung von Regenwasser werden der unbehandelte Teil aus der Trennkanalisation, der in der Mischkanalisation abgetrennte Anteil und der in der Mischkanalisation behandelte Anteil aufaddiert:

$$F_i = F_i * (1 - f_{treated}) + F_i * f_{treated} * f_{CSO} + F_i * f_{treated} * (1 - f_{CSO}) * (1 - r_{WWTP}),$$

wobei $f_{treated}$ der Anteil der Mischkanalisation ist und f_{CSO} der Anteil des Regenwassers in der Mischkanalisation ist, der vor der Kläranlage direkt ins Gewässer abgeschieden wird.

Letztendlich werden alle Frachten aus den einzelnen Pfaden aufaddiert und als Summe in das angeschlossene Flusssegment weitergeleitet:

$$F_{tot} = \sum F_i$$

36
Konzentrationsberechnung

Auch das Konzept des flächenhaften Inputs durch Landwirtschaft und geogene Einflüsse wie erzreiche Böden musste hinzugefügt werden. Dies geschieht integriert im Flussmodell. Grundsätzlich müssen die folgenden Werte zur Spezifikation eines Flussabschnitts ermittelt werden:

- Input Φ_0: als Fracht [kg/a], ergibt sich aus allen Einleitungen wie vorhergehender Flussabschnitt, Kläranlagen, Direkteneinleiter und auch dem diffusen Input
- Output Φ_{out}: als Fracht [kg/a], ergibt sich als Input abzüglich der Verluste während Durchfließen des Flussabschnitts
- Konzentration im Flussabschnitt C_{mean}: als Konzentration [mg/l], ergibt sich als Mittelwert der Frachten auf der Länge des Flussabschnitts geteilt durch das Volumen

Es wird zunächst angenommen, dass der Input bereits zu Beginn des Flussabschnitts stattfindet und alle Verlustprozesse damit über die gesamte Länge des Abschnitts wirken. Zur Berechnung der Endkonzentration ergibt sich damit:

$$C_{\text{end}} = C_0 \exp(-k \cdot HRT)$$

Die mittlere Konzentration entlang des Flusssegments wird berechnet mit:

$$C_{\text{mean}} = C_0 \frac{(1 - \exp(-k \cdot HRT))}{Q \cdot k \cdot HRT}$$

wobei:

- Q = Durchfluss [m3/s]
- k = Parameter Austragsprozesse [1/s]
- HRT = Aufenthaltszeit [h]

Möchte man nun den diffusen Input modellieren, muss einbezogen werden, dass dieser z.B. auch kurz vor Ende des Flussabschnitts stattfinden kann und damit die Verweilzeit und auch die Länge, über die die Verluste stattfinden können, um einiges kürzer ist. Dies ist in der Differentialgleichung zu berücksichtigen. Es ergeben sich dann für mittlere und Endkonzentration folgende Gleichungen:

$$C_{\text{end}} = C_0 \exp(-k \cdot HRT) + \frac{I \cdot Q}{V \cdot k} \cdot (1 - \exp(-k \cdot HRT))$$
\[C_{\text{mean}} = \frac{C_0}{Q \cdot \text{HRT} \cdot k} - \frac{I}{\text{HRT} \cdot V \cdot \frac{k}{2}} \left(1 - \exp\left(-k \cdot \text{HRT}\right)\right) + \frac{I}{V \cdot k} \]

wobei:

\begin{align*}
I & = \text{Input aus diffusem Eintrag [kg/s]} \\
V & = \text{Volumen [m}^3\text{]} \\
\end{align*}

Der Parameter \(k \) stellt dabei die Summe aller Austragsprozesse dar. Da im Falle von Zink lediglich die Sedimentation eine Rolle spielt, ergibt sich \(k \) aus folgender Formel:

\[k_{\text{Sed}} = \frac{v_{\text{Sed}} \cdot 1.1416 \times 10^{-7} \cdot \varsigma_{\text{Sed}} \cdot 1 \times 10^{-3} \cdot 1 \times 10^{-6} \cdot (1 - \epsilon_{\text{Sed}})}{C_{\text{Schweb}} \cdot d} \]

wobei:

\begin{align*}
\text{k}_{\text{Sed}} & = \text{Sedimentationsrate für Zink [1/h]} \\
v_{\text{Sed}} & = \text{Sedimentwachstum [mm/a]} \\
\varsigma_{\text{Sed}} & = \text{Dichte des Schwebstoffs [kg/l]} \\
\epsilon_{\text{Sed}} & = \text{Porenvolumen im Sediment} \\
C_{\text{Schweb}} & = \text{Schwebstoffgehalt [mg/l]} \\
d & = \text{Tiefe des betrachteten Kompartiments [m]} \\
1.1416e-7 & = \text{Einhheitsfaktor (zeitlich: a/h)} \\
1e6 & = \text{Einhheitsfaktor (Gewicht: mg/kg)} \\
\end{align*}

Die zur Berechnung benötigten Parameter müssen gegeben werden. Da sich das Sedimentwachstum für reguläre Flussabschnitte erheblich von dem in Stauseen und Talsperren unterscheidet, muss eine Differenzierung zwischen diesen vorgenommen werden. Hierzu wurden verschiedene Klassen von Flussabschnitten eingeführt, für die verschiedene Werte für die Parameter angegeben werden können. So ergibt sich bereits eine andere Sedimentationsrate für die entsprechenden Flussabschnitte. Es ändern sich jedoch noch weitere Parameter, die ausschlaggebend für die sedimentierte Menge sind, z.B. die Verweilzeit des Wassers im See. Daher erfolgt die Modellierung von Seen und Talsperren in anderer Art und Weise:

\[C_{\text{end}} = \frac{C_0 \cdot Q}{Q + k / 3.600 \times V} \]
wobei:

\[3.600 \text{ Einheitenfaktor (zeitlich: s/h)} \]

3.3 Anwendung des Modells

Die verschiedenen Eintragspfade für Zink in die Ruhr wurden im Vorangegangenen herausgearbeitet und quantifiziert. Es soll nun geprüft werden, ob diese Pfad die Emissionen vollständig erfassen und damit die Zinkkonzentrationen in der Ruhr erklären können. Unter der Voraussetzung, dass die modellierten Konzentrationen den Messwerten entsprechen und davon ausgegangen werden kann, dass alle Pfad korrekt quantifiziert wurden, kann dann eine Analyse der einzelnen Pfade vorgenommen werden. Dabei soll betrachtet werden, welcher Pfad in welchem Ausmaß zur Belastung der Ruhr beiträgt und ob es zu punktuellen Belastungssituationen kommt, an denen auffällig hohe Konzentrationen zu erwarten sind.

3.3.1 Definition des Basisszenarios

Für die Simulation der mittleren Zinkkonzentrationen in der Ruhr unter Normalbedingungen müssen zunächst alle Eingabeparameter wie Durchflüsse, Inputmengen, Hintergrundkonzentration usw. definiert werden.

Ausgangsbasis für die Segmentierung des Flusseinzugsgebiets war das in GREAT-ER bereits aufbereitete Fließgewässernetz der Ruhr. Hier mussten einige Anpassungen vorgenommen werden, die im Zuge von Weiterentwicklungen der Software nicht nachgeführt worden waren. So war z.B. die Definition der Seen und Talsperren mit Volumenangabe durchzuführen. Eine Liste der im Modell enthaltenen Seen und Talsperren mit Stauinhalten etc. ist in Anhang B zu finden.

Die Informationen über Kläranlagen basieren auf den Daten des LUA NRW (NIKLAS, REBEKA) für das Jahr 2004 [23], [29]. Hier wurden Ort der Einleitung, an die Kläranlage angeschlossene Einwohner, Abwassermenge etc. aufgeführt. Da viele Kläranlagen sowohl in der Misch- als auch in der Trennkanalisation arbeiten, zu den Anteilen jedoch keine Informationen vorlagen, wurde angenommen, dass die Gesamtfläche im Einzugsgebiet zu 70% in der Mischkanalisation entwässert wird. Die Entlastungsrate in der Mischkanalisation wurde auf 40% geschätzt.

Zur Ermittlung der an die Kläranlagen angeschlossenen Dach- und Straßenfläche wurden die Gemeindezugehörigkeit und die zu der jeweiligen Gemeinde gehörigen Flächen erfasst [30]. In Abhängigkeit der an die Kläranlage angeschlossenen Haushalte wird dann die

Die Parameter zur Berechnung der Sedimentation entsprechen langjährigen Untersuchungen des Ruhrverbands oder mittleren Werten für deutsche Fließgewässer. So wurde die Schwebstoffkonzentration als Mittelwert der letzten 10 Jahre mit 12 mg/l angegeben. Die Verteilung von Zink zwischen gelöster und gebundener Phase ist dann mit einem Verteilungskoeffizient von 84.000 l/kg rund 1:1 [13], was Messungen des Ruhrverbands von 2004 entspricht. Der RAR Zink gibt für die Niederlande eine Verteilung von 25 % zu 75 % an, für Europa dagegen ein Verhältnis von 30:70 von gelöstem zu gebundenem Zink. Die Messwerte für den Verteilungskoeffizient K_d variieren von 64.000 bis 176.000 l/kg [13].

Die Simulationsergebnisse, die in dieser Arbeit näher betrachtet werden sollen, basieren zunächst auf einer deterministischen Berechnung von GREAT-ER. Dabei wird für alle Parameter der Mittelwert angenommen und somit auch der Mittelwert für die Emissionen und Konzentrationen berechnet. Im Anschluss daran soll eine probabilistische Berechnung durchgeführt werden, bei der lediglich die Abflussparameter als zufallsverteilt angenommen werden, da nur für wenige weitere Parameter Abschätzungen zu Verteilungen vorliegen. So soll die Spannbreite der Konzentrationen ermittelt werden, die sich aus den Abflusschwankungen ergibt. Die Anzahl der Durchläufe soll dabei auf 30.000 gesetzt werden.

3.3.2 Vergleich der einzelnen Pfade

Das Basisszenario wird zunächst auf Vollständigkeit und Plausibilität geprüft. Es soll dann exemplarisch auch auf die Signifikanz der einzelnen Pfade untersucht werden. Unter der Annahme, dass die Zinkkonzentrationen der Ruhr durch das Basisszenario adäquat erklärt werden, sollen die Auswirkungen bestimmter Emissionspfade analysiert werden. Dabei soll zunächst der Hauptlauf der Ruhr untersucht und dann auf wichtige Nebenflüsse eingegangen werden.
4 Ergebnisse und Diskussion

Bereits zu früheren Modellierungen in GREAT-ER wurde das gesamte Fließgewässernetz des Ruhreinzugsgebiets in einzelne Segmente aufgeteilt, die eine maximale Länge von 2 km nicht überschreiten. Dies resultiert aus der Annahme einheitlicher Bedingungen für Durchfluss und Fliessgeschwindigkeit innerhalb der Segmente, die bei längeren Flussstücken nicht haltbar ist. Deshalb ist eine Unterteilung in kleinere Flussstücke nötig, um die Abbau- und Transportprozesse korrekt beschreiben zu können. Abbildung 4.1 zeigt die Darstellung des Fließgewässernetzes in GREAT-ER.

Abbildung 4.1: Fließgewässernetz des Ruhreinzugsgebiets in GREAT-ER

Im rechten Teil des Bildes ist das Einzugsgebiet der Ruhr dargestellt. Der grüne Hintergrund stellt das Einzugsgebiet selbst dar, die blauen Linien bedeuten Flussabschnitte. Dicker dargestellte Linien deuten die Stauseen und Talsperren des Einzugsgebiets an. Punkteinleitungen werden als Punkte dargestellt, wobei zwischen Direkteinleitern und Kläranlagen unterschieden wird.

Im linken Bildrand ist die Legende zu sehen, die die einzelnen Elemente näher erläutert. Später wird hier auch eine Erklärung der farblich dargestellten Konzentrationen zu finden sein.
4.1 Vergleich von Mess- und Modellwerten

4.1.1 Plausibilität der Emissionsabschätzungen

4.1.1.1 Fracht im Kläranlagenzulauf

Vom Ruhrverband wurden die Schwermetallfrachten im Zulauf der Kläranlagen auf ca. 85 t/a geschätzt [5]. Eine Aufteilung der Frachten auf die verschiedenen Abwasserteilströme nach Ruhrverband ist in Tabelle 4.1 dargestellt. Außerdem ist in Tabelle 4.1 ein Vergleich mit den in GREAT-ER geschätzten Frachten in den Teilströmen zu sehen.

<table>
<thead>
<tr>
<th></th>
<th>Ruhrverband [t/a]</th>
<th>GREAT-ER [t/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häusliches Abwasser</td>
<td>29</td>
<td>30,9</td>
</tr>
<tr>
<td>Indirekteinleiter</td>
<td>3,6</td>
<td>1</td>
</tr>
<tr>
<td>Regenabfluss</td>
<td>24,8</td>
<td>20,8</td>
</tr>
<tr>
<td>Fremdwasser</td>
<td>3,8</td>
<td>---</td>
</tr>
<tr>
<td>Summe Teilbereiche</td>
<td>61,2</td>
<td>52,7</td>
</tr>
<tr>
<td>Zufluss gesamt</td>
<td>85</td>
<td>---</td>
</tr>
<tr>
<td>Fehlbetrag</td>
<td>23,8</td>
<td>---</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Zinkfrachten im Kläranlagenzulauf: Differenzierung nach verschiedenen Abwasserteilströmen

Es wird deutlich, dass die in der Modellierung betrachteten Pfade in der Summe sehr gut übereinstimmen. Die Differenz zwischen der Summe der Teilbereiche und der gesamten Zulauffracht in der Abschätzung des Ruhrverbands wird vermutlich durch unbekannte gewerbliche Einleitungen erklärt.

4.1.1.2 Fracht im Kläranlagenablauf

Für einige Kläranlagen sind in offiziellen Berichten jährlich emittierte Zinkfrachten angegeben [2], [24]. Abbildung 4.2 zeigt einen Vergleich der Daten mit Simulationsergebnissen in GREAT-ER.
Offensichtlich unterschätzen die modellierten die Messwerte zum Teil sehr deutlich. Da in den Messdaten auch die Frachten von industriellen Indirekteinleitern enthalten sind, für diese jedoch im Modell kaum Informationen vorlagen, ist anzunehmen, dass die Differenzen hierdurch erklärt werden können. Diese Vermutung wird auch durch die gut übereinstimmenden Zulauffrachten in den verschiedenen Abwasserteilströmen unterstützt (s. Kapitel 4.1.1.1). Daher wurde für alle Anlagen mit einer Abweichung größer Faktor 2 die Differenz zwischen Mess- und Modellwerten als zusätzliche Fracht im Modell eingefügt, wobei angenommen wurde, dass diese Fracht aus Indirekteinleitungen stammt. Insgesamt ergibt sich dabei im Zulauf eine zusätzliche Fracht von ca. 24 t/a, was sich mit den Angaben des Ruhrverbands deckt.

Für die gesamte Ablauffracht gibt der Ruhrverband rund 19 t/a an. Unter Berücksichtigung der zusätzlichen Frachten ergibt sich in der Simulation eine gesamte Ablauffracht von 20 t/a.

4.1.2 Konzentrationsprofile und Messwerte

Der Ruhrverband führt seit mehreren Jahren wöchentlich Längsuntersuchungen an der Ruhr durch, bei denen verschiedene Parameter beobachtet werden. Daher existiert eine Datenbasis, anhand derer die Simulationsergebnisse überprüft werden können. In Abbildung 4.3 sind die Messstellen des Ruhrverbands gezeigt. [31]
Zusätzlich zu den Messstellen entlang des Hauptlaufs der Ruhr sollen einige Nebenflüsse und besondere Stellen näher untersucht werden, an denen spezifische Einflüsse eine Rolle spielen.

Die Messwerte werden vom Ruhrverband in Konzentrationen, also in Fracht pro Durchflussmenge, angegeben. Auch GREAT-ER stellt Konzentrationen für die einzelnen Flussabschnitte bereit. Um jedoch eine Vergleichbarkeit zu gewährleisten, muss der aktuelle Durchfluss beachtet werden, da die deterministische Berechnung des Basisszenarios mit dem mittleren langjährigen Durchfluss durchgeführt wurde. Es kann also bei gleicher Fracht der Messwert vom berechneten Wert abweichen, wenn der Abfluss am Messtag deutlich vom durchschnittlichen Abfluss abweicht. Die Abflusschwankungen des Jahres 2004 sind in Abbildung 4.4 für einige, ausgewählte Messstellen dargestellt.
Die starken Abflussschwankungen führen zum einen bei gleicher Fracht zu unterschiedlichen Konzentrationen und können sich andererseits auch auf Oberflächenabspülung, Resuspension und ähnliche Prozesse auswirken. Bei erhöhtem Abfluss kann der Eintrag durch solche Prozesse deutlich höher sein als bei Niedrigabfluss, während andererseits durch die zusätzliche Wassermenge eine Verdünnung der Konzentration erreicht wird, wenn die Einträge unabhängig vom Abfluss sind. Abbildung 4.5 zeigt die Zinkkonzentrationen an der Überwachungsstation Duisburg im Sommer und im Winter für die letzten Jahre. Die im
Winter deutlich höheren Abflüsse führen hier zu durchschnittlich höheren Konzentrationen als im Sommer, da vermutlich durch Resuspensionsprozesse Zink mobilisiert wird.

Die folgende Betrachtung der Konzentrationen bezieht sich also jeweils auf die an den Messtagen vorherrschenden Abflüsse und sollte mit Vorsicht mit den Modellwerten verglichen werden. Ein Vergleich der Frachten wird daher zusätzlich durchgeführt, sofern Daten zu Abflüssen vorliegen.

4.1.2.1 Hauptlauf der Ruhr

Zunächst fällt die gute Übereinstimmung der Mittelwerte (beide in rot) auf. Die Messwerte des Ruhrverbands entsprechen den Simulationsergebnissen in GREAT-ER voll und ganz.
Die Konzentrationen zwischen den Messwerten hingegen, die durch lineares Verbinden der Messwerte u.U. falsch angezeigt sind, werden durch die Simulation detaillierter dargestellt. So wird z.B. deutlich, dass im Oberlauf der Ruhr bis Fluss-km 190 kein linearer Anstieg der Konzentrationen stattfindet, sondern dass einzelne, sprunghafte Konzentrationsanstiege zu beobachten sind, die im Folgenden noch näher erläutert werden.

Die 10- und 90-Perzentile (dargestellt als grauer Bereich) zeigen die Variabilität der Zinkkonzentrationen. Da die Simulation lediglich mit einer Variabilität der Abflüsse gerechnet wurde, ergibt sich, dass die Schwankungen der Zinkkonzentrationen bereits durch die Schwankungen der Abflüsse erklärt werden können.

Weitere Erzlagerstätten weist auch das Einzugsgebiet der Hundem mit Olpe und Silberbach auf. Diese fließen jedoch erst über die Lenne bei Fluss-km 92 in die Ruhr ein.

Die drastische Erhöhung durch den Zufluss der Nebenflüsse im Oberlauf geht aufgrund von Verdünnung z.B. durch die unbelasteten Nebenflüsse Henne und Wenne schnell wieder zurück. Das Einzugsgebiet ist hier eher dünn besiedelt und weist kaum industriellen Einfluss auf. Hinter Arnsberg fließt bei Fluss-km 140 die wenig belastete Röhr mit rund 4 m³/s in die Ruhr. Diese wies in den letzten Jahren im Mündungsbereich Konzentrationen von unter 10 µg/l auf, wodurch es hier wieder zu einer deutlichen Verdünnung kommt. Der größte anthropogen bedingte Zinkeintrag im Oberlauf der Ruhr ist die Kläranlage Bestwig mit rund 1,6 t/a; Direktteinleiter sind kaum zu finden (insgesamt unter 15 kg/a).

Der Zinkgehalt bleibt dann zunächst nahezu konstant. Die Ruhr erreicht dichter besiedeltes und stark industriell geprägtes Gebiet. Belastungen erfolgen hier also weniger durch landwirtschaftliche oder geogene als durch industrielle und siedlungswirtschaftliche Umstände. Dies kann bereits an Hönne und Baarbach um Ruhr-km 100 beobachtet werden, die jedoch trotz höherer Konzentrationen aufgrund der niedrigen Abflüsse nicht zu nennenswerten Schwankungen in der Ruhr führen. Ab dem Kraftwerk Westhofen bei Fluss-km 95,15 ist wieder ein leichter Anstieg der Konzentration zu verzeichnen. Hier ist der Zufluss der vergleichsweise stark belasteten Lenne bei Fluss-km 91,75 zu erwähnen, die im Folgenden noch näher untersucht wird. Nach dem Auslauf des Hengsteysees fließt dann vor dem Harkortsee bei Fluss-km 87,67 die Volme in die Ruhr. Am Auslauf des Harkortsees ist wieder eine etwas geringere Konzentration zu verzeichnen, was durch die Sedimentationsvorgänge im Hengsteysee und im Harkortsee bedingt ist. Die Konzentration bleibt dann bis zur Mündung der Ruhr weitgehend konstant bei 20 – 30 µg/l.

Insgesamt stimmen die Konzentrationsniveaus der Simulation sehr gut mit Messwerten überein. Dies trifft sowohl auf mittlere Konzentrationen als auch auf die Perzentile zu. Maximale Abweichungen des Faktors 2-3 sind durch Abflussschwankungen erkläbar und liegen durchaus im Rahmen. Die georeferenzierte Analyse der eingetragenen Zinkfrachten
führt somit insgesamt zu sehr schlüssigen Ergebnissen und liegt durchweg in der richtigen Größenordnung.

4.1.2.2 Möhne

Qualitativ stimmen die Konzentrationsverläufe aus Mess- und Modellwerten sehr gut überein. Die von der Möhne in die Ruhr eingebrachten Zinkfrachten sind jedoch insgesamt unbedeutend. Da unterhalb der Möhnetalsperre aufgrund ihrer Effektivität kaum noch Zink vorhanden ist, fließt die Möhne nahezu unbelastet in die Ruhr.

4.1.2.3 Lenne

Die Lenne ist mit ihrer Länge von ca. 130 km und ihrem großen Einzugsgebiet von 1.353 km² einer der wichtigsten Nebenflüsse der Ruhr. Sie nimmt zum einen die Bigge mit der Olpe, den Hachemer Bach (Lenne-km 81,02), aber indirekt über die Hundem (Lenne-km 86,36) auch die Olpe und den Silberbach auf, die beide wie oben erwähnt einige Erzlagerstätten durchfließen. Vor allem der Hachemer Bach zeichnete sich aufgrund der Aufnahme der Sickerwässer des Hachener Schlammteichs durch hohe Zinkkonzentrationen aus, die in den letzten Jahren jedoch stark rückläufig waren. Die Mündungskonzentrationen der Hundem waren 2003 so hoch, dass sich die Konzentrationen der Lenne um ein Vierfaches auf etwa 20 µg/l erhöhten [31]. Wenig später fließen dann auch die Grubenwassereinleitungen des ehemaligen Erzbergwerks Meggen in die Lenne. Im weiteren Verlauf besteht die Belastung hauptsächlich aus Abwässern von Haushalten und Regenabläufen und aus industriellen

![Konzentrationsprofil der Lenne](image)

Abbildung 4.9: Konzentrationsverlauf der Lenne nach Messungen des Ruhrverbands 2003 (links, [31]) und nach Simulation mit GREAT-ER (rechts) von der Quelle bei Fluss-km 129 bis zur Mündung

Es wird deutlich, dass der Konzentrationsverlauf qualitativ gut getroffen wird und auch die Höhe der Konzentrationen gut übereinstimmt. Hier soll nun zusätzlich eine Betrachtung der Frachten vorgenommen werden.
Tabelle 4.2: Abflüsse an den Untersuchungstagen und Hauptzahlen der Lennepegel [31]

<table>
<thead>
<tr>
<th>Pegel</th>
<th>Fluss-km</th>
<th>MQ</th>
<th>MNQ</th>
<th>Jahresreihe</th>
<th>26.5.2003</th>
<th>15.9.2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickenbach</td>
<td>89,80</td>
<td>4,08</td>
<td>0,406</td>
<td>1952/2001</td>
<td>1,91</td>
<td>0,15</td>
</tr>
<tr>
<td>Barnemühl</td>
<td>75,49</td>
<td>9,90</td>
<td>1,10</td>
<td>1978/2002</td>
<td>5,07</td>
<td>2,09</td>
</tr>
<tr>
<td>Rönkhausen</td>
<td>66,14</td>
<td>19,8</td>
<td>5,55</td>
<td>1967/2001</td>
<td>8,80</td>
<td>6,48</td>
</tr>
<tr>
<td>Altena</td>
<td>29,75</td>
<td>25,5</td>
<td>7,24</td>
<td>1968/2001</td>
<td>10,8</td>
<td>7,75</td>
</tr>
<tr>
<td>Hohenlimburg</td>
<td>6,92</td>
<td>30,4</td>
<td>8,57</td>
<td>1978/2002</td>
<td>14,0</td>
<td>8,10</td>
</tr>
</tbody>
</table>

Tabelle 4.2 zeigt die Abflüsse der Untersuchungstage im Vergleich zu mittleren Abflüssen [31]. Die Abflüsse der Untersuchungstage liegen bei rund der Hälfte der Mittelwerte. Aus diesen Daten und den Abflussdaten des Modells wurden die in Abbildung 4.10 dargestellten Frachten berechnet.

Abbildung 4.10: Frachtbetrachtung für die Lenne

Da die Abflüsse an den Messtagen deutlich niedriger waren als mittlere Abflüsse, wie sie in GREAT-ER zur Berechnung genutzt werden, ergeben sich trotz gleicher Konzentrationen höhere Frachten. Die Ursache für die niedrigen Frachten liegt in den fehlenden Zinkeinträgen aus Pfaden, die durch Regenereignisse getrieben werden. Abläufe von Dächern und Straßen sind in den Messwerten nicht enthalten. Dies zeigt, dass mittlere Jahresfrachten aus einer genügend großen Anzahl an Messwerten berechnet werden sollten. Im Ruhrgütebericht 2005 wird für die Lennemündung eine mittlere jährliche Zinkfracht von ca. 20 t/a angegeben [35].
Innerhalb der beiden Messkampagnen ergibt sich eine Abweichung um Lenne-km 70. Zunächst fließt bei Lenne-km 86,36 die Hundem zu. Die Belastung der Hundem ist auf Nachwirkungen des ehemaligen Erzbergbaus zurückzuführen, die vor allem die Nebenflüsse Olpe und Silberbach betreffen. Hier wurden deutlich erhöhte Werte gemessen, die aus diffusen Einträgen resultieren. Durch inverse Modellierung wurde die Höhe dieser Einträge abgeschätzt und längengewichtet auf die betroffenen Flussabschnitte aufgeteilt. Der Zufluss der Grubenabwässer des ehemaligen Bergwerks Meggen nach Mündung der Hundem führt zu einem weiteren Konzentrationsanstieg. Außerdem befinden sich zwischen Fluss-km 81 und 75 die Kläranlagen der Stadt Lennestadt.

4.1.2.4 Weitere Messwerte an Nebenflüssen

Das Einzugsgebiet der bei Fluss-km 173 mündenden Wenne ist hauptsächlich landwirtschaftlich genutzt und mit 2 − 7 % Bebauung naturbelassen. Die Wenne nimmt die

Im Unterlauf der Ruhr münden bei Fluss-km 66,67 der Öl bach und bei Fluss-km 22,72 der Rinderbach. Beide Gewässer sind mit 13,4 km (Ölbach) und 11,69 km (Rinderbach) eher kurz, sind jedoch geprägt durch ein stark bebautes Einzugsgebiet (Ölbach 55%, Rinderbach 45%) [33]. Während der Ölbach bei Messungen im Mündungsbereich einen Zinkgehalt von 11 – 16 µg/l aufwies, modelliert GREAT-ER hier ca. 45 µg/l. Bedingt wird dies durch die Kläranlage Bochum-Ölbachtal. Der Öl bach hat einen nur geringen Durchfluss und wird durch die Abwässer der Kläranlage stark verschmutzt [33]. Aus diesem Grund wurden Schlammteiche (Harpener Teiche) eingeführt, die zum einen zur Reinigung des Flusses

4.1.2.5 Gesamtvergleich

In den vorangegangenen Abschnitten wurden verschiedene Messwerte mit den Simulationsergebnissen von GREAT-ER verglichen. Abbildung 4.11 zeigt nun einen Vergleich aller Modellwerte mit Messwerten, wobei die 1:1-Linie und die Linien für die Abweichung um den Faktor zwei eingezeichnet sind.

![Mittlere gemessene Zinkkonzentrationen im Vergleich mit GREAT-ER](image)

Abbildung 4.11: Vergleich von Messwerten mit Simulationsergebnissen (blau: Messstellen im Ruhrhauptlauf; grün: langjährige Mittelwerte der Nebenflüsse)

4.1.3 Schwebstoffuntersuchungen

Für die Bestandsaufnahme, die im Rahmen der Wasserrahmenrichtlinie für die Ruhr durchgeführt wurde, wurden Schwebstoffuntersuchungen an verschiedenen Stellen im Ruhreinzugsgebiet durchgeführt. Die Ergebnisse dieser Untersuchungen wurden mit dem vom LAWA angegebenen Qualitätskriterium von 400 mg/kg verglichen und in Abbildung 4.12 dargestellt.

Abbildung 4.12: Einhaltung des Qualitätskriteriums für Zink am Schwebstoff im Ruhreinzugsgebiet
(grün: ≤ 400 mg/kg, rot: ≥ 800 mg/kg)

Vor allem im Unterlauf der Ruhr, in der Volme, in der Lenne ab Zufluss der Hundem und in der Hönne wurde bestätigt, dass die Schwebstoffkonzentrationen das LAWA-Qualitätskriterium überschreiten (rote Abschnitte). Der Oberlauf der Ruhr steht unter dem Verdacht, dass Qualitätskriterium ebenfalls zu überschreiten; dies konnte jedoch aufgrund von fehlenden Daten nicht bestätigt werden (grau). Die Quellbereiche der meisten Nebenflüsse hingegen halten das Qualitätskriterium ein und weisen keine zu hohen Konzentrationen am Schwebstoff auf (grün).

Das LAWA-Qualitätskriterium von 400 mg/kg bedeutet unter der Annahme von Gleichgewicht zwischen Wasser und Feststoffphase, einem K_d von 84.000 l/kg und einer Schwebstoffkonzentration von rund 12 mg/l eine Gesamtkonzentration von 9,6 µg/l. Da in dieser Arbeit nur mit Gesamtkonzentrationen gerechnet wurde, ist in Abbildung 4.13
dargestellt, an welchen Stellen die Konzentration im Modell $9.6 \, \mu g/l$ unterschreitet (grün) bzw. $19.1 \, \mu g/l$ überschreitet (rot).

Abbildung 4.13: Simulationsergebnisse im Vergleich mit Schwebstoffmessungen

4.2 Sedimentation

Die Sedimentkonzentrationen an Zink hängen maßgeblich von den im Wasser zu findenden Konzentrationen ab, die natürlich ihrerseits von der Höhe der Einträge abhängen. So wurde bereits in früheren Untersuchungen der Zusammenhang zwischen der Emission aus
Zinkproduktionen bzw. zwischen dem Umsatz aus Zinkprodukten mit den Ablagerungen in Sedimenten festgestellt [4].

Abbildung 4.14: Zinkgehalte im Sediment der Talsperre Echthausen und Produktionszahlen des Bergwerks Ramsbeck [4]

Abbildung 4.15: Zinkgehalt des Stausees Harkortsee und preisbereinigter Umsatz der Eisen- und Stahlindustrie in Hagen [4]

Abbildung 4.16: Zinkgehalt im Sediment des Harkortsees und Roheisenproduktion der Hasper Hütte [4]

Das Sedimentwachstum wurde für die drei Kategorien Flussabschnitt, Stausee und Talsperre definiert. Es beträgt in diesem Modell für Talsperren 5 mm/a und für Stauseen 3 mm/a. Die Auswirkungen des Sedimentwachstums in Flussabschnitten auf das Konzentrationsprofil im oben beschriebenen Szenario wurden untersucht. Es ergeben sich keine signifikanten Änderungen für die Konzentrationsverläufe.
Bei einem Eintrag von 80,4 t/a und einem Sedimentwachstum von 0,5 mm/a beträgt die Fracht an der Mündung der Ruhr noch 70,1 t/a. Damit liegt der absolute Austrag durch Sedimentation bei rund 10,3 t/a, was 13% entspricht. Der Großteil der sedimentierten Fracht verbleibt dabei in den Seen und Talsperren des Einzugsgebiets.

Abbildung 4.17: Lage der größten Stauseen und Talsperren im Ruheinzugsgebiet

Die Talsperre Echthausen wurde 1942 errichtet und dient als Wasserreservoir für das Wasserwerk Echthausen. Sie ist bei Fluss-km 130,2 die erste größere Sedimentfalle im Hauptlauf der Ruhr. Die Wasseroberfläche beträgt rund 19 ha und die mittlere Tiefe liegt bei 4,2 m. Der Zufluss besteht im Mittel aus 27,7 m³/s und es findet ein Sedimentwachstum von 0,76 cm/a (1999) statt [4]. Die Verweilzeit liegt bei etwas über fünf Stunden. Mit einem Volumen von rund 520.000 m³ ergibt sich damit in GREAT-ER jährlich eine sedimentierte Fracht von 252 kg, was ca. 1% der eingetragenen Gesamtfracht von 31,3 t entspricht. Bei einem Partikelgehalt im Wasser von 12 mg/l und einem Porenvolumen von 25% resultiert daraus eine Sedimentkonzentration von 1188 mg/kg. Untersuchungen zu Zinkgehalten im Sediment für die 90er Jahre haben Konzentrationen von 948 mg/kg ergeben. Daten und Modell stimmen hier gut überein.
Der Harkortsee befindet sich unmittelbar nach dem Zufluss der Volme, die die Abwasser- und Schadstofffracht des Industrieraums Hagen/Ennepetal mitführt. Er wurde 1931 als Flusskläranlage errichtet und weist einen Staumengen von rund 3,2 Mio. m³ und eine mittlere Tiefe von 2,2 m auf. Der jährliche durchschnittliche Zu- und Abfluss liegt bei rund 69,4 m³/s und das Sedimentwachstum bewegt sich zwischen 0,5 und 1,2 cm/a [4]. Die Verweilzeit beträgt im Mittel ca. 13 Stunden. In GREAT-ER werden jährlich rund 61,7 t Zink in den Harkortsee eingetragen. Rund 60,2 t/a werden mit dem Flusslauf weiter getragen, was also eine Sedimentationsleistung von 1,5 t bzw. 2,4 % bedeutet. Bei einer Schwebkonzentration von 12 mg/l und einem Porenvolumen von 25 % ergibt sich damit eine Sedimentkonzentration von 938 mg/kg. In den 90er Jahren lag diese bei rund 1100 mg/kg, war in den letzten Jahren jedoch rückläufig [4].

Für größere Talsperren liegt die Sedimentationsrate noch um einiges höher. So verbleiben rund 73 % der in die Möhnetalsperre eingetragenen Fracht im Sediment. Da sich viele der großen Talsperren in den Nebenflüssen der Ruhr befinden und die Fracht unterhalb dieser Talsperren eingetragen wird, kommt somit ein Großteil der Fracht gar nicht erst in der Ruhr an. Zu untersuchen bleiben dabei die Konzentrationen in den Sedimenten der Talsperren und die Auswirkungen der Akkumulation der sedimentierten Frachten.

4.3 Vergleich der Emissionspfade

Die Analyse der Mess- und Modellwerte hat ergeben, dass die Gesamtbelastung der Ruhr sehr gut erklärt werden konnte und die Emissionspfade quantitativ und qualitativ in richtigen...

4.3.1 Geogene Hintergrundkonzentration aus zinkhaltigen Böden und Eintrag aus ehemaligem Bergbau

Die Konzentrationen, die sich aus der Auswaschung von Zink aus erzhaltigen Böden und aus den Einträgen aus ehemaligen Bergbaugebieten ergeben, sind in Abbildung 4.19 dargestellt.

Abbildung 4.19: Simulationsergebnisse in GREAT-ER für die Einträge aus erzhaltigen Böden

Es wird deutlich, dass relativ wenig Quellen lokal zu recht hohen Konzentrationen führen und dass diese Quellen, obwohl sie in verschiedene Nebenflüsse eintragen, bis zur Ruhrmündung eine relativ hohe Konzentration verursachen. Entscheidend sind dabei vor allem die Nebenflüsse im Oberlauf der Ruhr und die Hundem, ein Nebenfluss der Lenne.

4.3.2 Zink-Emissionen aus Haushaltsabwasser

Zum Vergleich ist in Abbildung 4.20 das Simulationsergebnis für den Eintragspfad Haushalte dargestellt.
Die einzelnen Emissionsquellen sind hier sehr viel mehr über das Einzugsgebiet verteilt, sodass nahezu alle größeren Nebenflüsse durch die Einträge betroffen sind. Allerdings zeigt sich, dass die Konzentrationen durchweg auf niedrigem Niveau liegen (< 2,5 µg/l) und bis zur Mündung keine außergewöhnlich hohen Frachten zu erwarten sind.

4.3.3 Zink-Emissionen aus Abspülung von Dächern

Die Emissionen aus Dachabläufen sind in Abbildung 4.21 dargestellt.

Da die Regenwasserabläufe vielerorts ebenfalls in Kläranlagen gesammelt und von dort in die Vorfluter geleitet werden, ist es nicht überraschend, dass das regionale

4.3.4 Zink-Emissionen aus Abspülung von Straßen

Die Simulationsergebnisse aus Straßenabläufen sind in Abbildung 4.22 dargestellt.

Abbildung 4.22: Simulationsergebnisse für die Einträge aus Straßenabläufen

4.3.5 Industrielle Direkteinleitungen

Die Emissionen aus industriellen Direkteinleitungen sind in Abbildung 4.23 gezeigt.
Abbildung 4.23: Simulationsergebnisse für Einträge aus Industrie

In diesem Szenario ergibt sich ein anderes geografisches Konzentrationsmuster. Nur wenige Flüsse sind betroffen und zeigen nur sehr niedrige Konzentratio nen.

4.3.6 Abspülung landwirtschaftlich genutzter Flächen

Abbildung 4.24 zeigt die Emissionen aus Abläufen von landwirtschaftlichen Flächen.

Abbildung 4.24: Simulationsergebnisse für die Einträge aus der Landwirtschaft

Aufgrund der weit verbreiteten landwirtschaftlichen Nutzung im Einzugsgebiet der Ruhr sind nahezu alle Flussabschnitte von diesem Eintragspfad betroffen. Allerdings bleiben die Konzentrationen auf sehr niedrigem Niveau (< 1 µg/l), so dass dieser Eintragspfad als eher unbedeutend angesehen werden kann. Die höchsten Konzentrationen treten im Oberlauf der
Möhne und in einigen kleineren Zuflüssen am Unterlauf der Ruhr auf. Obwohl aufgrund der geringen Sedimentation nahezu die gesamte emittierte Fracht bis in den Rhein gelangt, ist der Beitrag dieses Emissionspfades insgesamt vernachlässigbar gering.

4.3.7 Pfadvergleich insgesamt

Abbildung 4.25: Gesamtemissionshöhe der einzelnen Pfade im Vergleich

Insgesamt ergibt die georeferenzierte Modellierung der verschiedenen Eintragspfade, dass die Zinkkonzentrationen im wenig besiedelten Oberlauf im Wesentlichen durch geogene Ursachen entstehen. Die stärker werdende Besiedlung in westlicher Richtung führt dann zu vielfältigen, anthropogenen Einträgen, die bis zur Mündung der Ruhr in den Rhein kumulieren und mehr als die Hälfte der Mündungsfracht ausmachen.

Abbildung 4.26: Konzentrationsverlauf der einzelnen Pfade in der Ruhr
5 Schlussfolgerung und Ausblick

Allerdings wurden aufgrund von verschiedenen Datenlücken einige Annahmen getroffen, die näher betrachtet werden sollten.

Die Berechnung der Höhe der Emissionen basiert auf gewissen Bezugsparametern, die zum Teil aus statistischen Daten bezogen wurden, zum Teil jedoch lediglich abgeschätzt werden konnten. Diese Abschätzungen führten zu durchaus plausiblen Ergebnissen, aufgrund von fehlenden Daten konnten sie allerdings im Detail weder bestätigt noch widerlegt werden.

Weiterhin wäre auch die geogene Belastung näher zu betrachten. In dieser Arbeit wurde auf den Eintrag in ehemaligen Erzbaugebieten eingegangen. Untersuchungen an verschiedenen Flüssen haben allerdings auch deutliche Konzentrationsunterschiede hinsichtlich der Quellwässer ergeben. Dies kann z.B. durch unterschiedliche pH-Werte bedingt sein, die zu höherer oder niedrigerer Löslichkeit und Mobilität der Schwermetalle...
führen. Vielleicht käme auch eine generelle Hintergrundbelastung in Betracht, die für Flüsse ohne jeglichen Einfluss angenommen werden kann.

6 Literaturverzeichnis

7 Anhang

7.1 Anhang A

7.1.1 Ermittlung der verzinkten Fläche von Dächern und Regenrinnen

Da die an die Kläranlagen angeschlossene Dachfläche nicht angegeben war, wurden die folgenden Abschätzungen und Annahmen getroffen:

Es wurde angenommen, dass die privat genutzte Wohnbaufläche in Abhängigkeit vom Siedlungstyp zu 15% (ländlich), 20% (suburban) oder 35% (urban) von Gebäuden überdeckt ist. Industriell genutzte Grundstücke werden als zu 35% (ländlich bzw. suburban) oder 45% (urban) bebaut angenommen. Die restlichen Gebäude- und Freiflächen werden als zu 20% (ländlich), 25% (suburban) oder 35% (urban) bebaut angenommen. Der Faktor zur Umrechnung der Gebäudefläche in die Dachfläche hängt vom Dachwinkel ab. Bei Flachdächern entspricht die Dachfläche der Gebäudegrundfläche, je spitzer der Dachwinkel jedoch wird, desto größer wird die Dachfläche. Für private Gebäude wird in diesem Modell ein mittlerer Winkel von 45° angenommen. Der Faktor zur Umrechnung von Gebäude- in Dachfläche beträgt dann 1,4. Industriell genutzte Gebäude werden als mit Flachdächern bedeckt angenommen und haben damit die gleiche Gebäude- wie Dachfläche. Üblich ist für
industriell genutzte Gebäude eine sehr flache Eindeckung mit einem Neigungswinkel von 5°, die in diesem Modell nur in erster Näherung als Flachdach betrachtet wird.

Die so für jede Gemeinde ermittelte Dachfläche wird dann über die Einwohnerzahl der Gemeinden in eine Pro-Kopf-Dachfläche umgerechnet. Diese kann dann mit der Einwohnerzahl der Kläranlage multipliziert werden, um die an die Kläranlage angeschlossene Dachfläche zu ermitteln. Dabei wird angenommen, dass die Wohnbedingungen aller an die Kläranlage angeschlossenen Einwohner vergleichbar sind. Zur Ermittlung der Zinkemissionen ist davon jedoch lediglich die verzinkte Dachfläche relevant. Diese wird in Deutschland mit rund 3% der Gesamtdachfläche angenommen. Damit entsteht folgende Formel zur Ermittlung der verzinkten Dachfläche:

\[A_{\text{Dach, benetzt}} = \frac{(A_{\text{WBFpriv}} \cdot F_{\text{Grund/Geb}} \cdot F_{\text{Geb/Dach}} + A_{\text{WBFindust}} \cdot F_{\text{Grund/Geb}} \cdot F_{\text{Geb/Dach}})}{E_{\text{WKA}} \cdot F_{\text{Anteil Zink}}} \]

- \(A_{\text{Dach, benetzt}} \) = benetzte verzinkte Dachfläche
- \(A_{\text{WBFpriv}} \) = privat genutzte Wohnbaufläche pro Gemeinde
- \(A_{\text{WBFindust}} \) = industriell genutzte Wohnbaufläche pro Gemeinde
- \(F_{\text{Grund/Geb}} \) = Faktor zur Umrechnung der Grundstücksfläche in die Gebäudefläche, abhängig vom Siedlungstyp und Art der Nutzung des Grundstücks (privat/industriell)
- \(F_{\text{Geb/Dach}} \) = Faktor zur Umrechnung der Gebäudefläche in die Dachfläche, abhängig von der Art der Nutzung des Grundstücks (privat/industriell)
- \(E_{\text{WKA}} \) = Einwohnerzahl der Kläranlage
- \(E_{\text{gem}} \) = Einwohnerzahl der jeweiligen Gemeinde
- \(F_{\text{Anteil Zink}} \) = Anteil der verzinkten Dächer

Es wird angenommen, dass die benetzte Fläche von Regenrinnen zwischen 2 und 6% der Dachfläche ausmacht. Bei einem standardisierten Haus können folgende Grunddaten angenommen werden:

- eine Grundfläche von 6 m x 10 m (= 60*1,4 = 84 m² Dachfläche)
- 2 Regenrinnen jeweils an den Querseiten oder an den Längsseiten des Gebäudes (also 12 bzw. 20 m Länge)
- ein Regenrinnen- und Fallrohrdurchmesser von 10 cm, Halbschalen
- 2 – 4 Fallrohre jeweils an den Enden der Regenrinnen, die im Mittel 5 m lang sind
Damit ergibt sich für die Regenrinnen eine Fläche von 1,89 – 3,14 m² \((2*6*2*\pi*0,05*0,5\) bzw. \(2*10*2*\pi*0,05*0,5\)). Nach UBA sind die Regenrinnen ca. zur Hälfte gefüllt, was bedeutet, dass gut 66% der Fläche benetzt werden (1,25 – 2,07 m²). Das macht 1,5 – 2,5 % der 84 m² Dachfläche aus. Hinzu kommt die Fläche der Fallrohre, die 3,14 – 6,28 m² \((2*5*2*\pi*0,05\) bzw. \(4*5*2*\pi*0,05\)) beträgt. Diese wird zu einem Drittel benetzt (1,05 – 2,09 m²), was dann 1,3 – 2,5 % der 84 m² Dachfläche ausmacht. Damit ergibt sich für Regenrinnen und Fallrohre insgesamt eine benetzte Fläche von 2,3 – 4,16 m², was 2,7 - 5 % der 84 m² Dachfläche ausmacht. Im Vergleich zu Dachflächen werden allerdings 80% als verzinkt angenommen.

Nach UBA-Bericht (Einträge von Kupfer, Zink und Blei ...) ergibt sich eine benetzte verzinkte Dachfläche von 88,4 Mio. km² und eine benetzte verzinkte Dachrinnenfläche von 98,3 km². Um dieses Verhältnis auch bei unserer Abschätzung zu erzielen, benötigen wir eine Regenrinnen- und Fallrohrfläche von 4,2% der Gesamtdachfläche \((\frac{Ad*0,8*x}{Ad*0,03}) = 98,3 / 88,4 \rightarrow x = (98,3*0,03) / (88,4*0,8) = 4,2\%\).

Damit ergibt sich zur Ermittlung der benetzten, verzinkten Fläche von Regenrinnen die folgende Formel:

\[
A\text{Regenrinne, benetzt} = A\text{Dach, benetzt} \times F\text{Dges/Rzink} \times F\text{Anteil Zink}
\]

\(A\)\text{Regenrinne, benetzt} = benetzte verzinkte Fläche von Regenrinnen und Fallrohren,

\(A\)\text{Dach, benetzt} = Wohnbaufläche pro Gemeinde

\(F\)\text{Dges/Rzink} = Faktor zum Verhältnis der Dachfläche zur benetzten verzinkten Fläche von Regenrinnen

\(F\)\text{Anteil Zink} = Anteil der verzinkten Dächer

Nun werden rund 85% dieser Flächen als an Kläranlagen angeschlossen betrachtet. Nach Hullman werden ca. 15% der Abflüsse versickert [7]. Dies kann jedoch regional stark variieren und sollte bei näherer Betrachtung geprüft werden.

7.1.2 Ermittlung der Straßenfläche

Verkehrsflächen liegen sowohl innerhalb von Ortschaften umgeben von Wohnflächen als auch außerhalb von Ortschaften, z.B. zur Verbindung mehrerer Wohnlagen. Für die Entwässerung im öffentlichen Kanalsystem spielt nur ein Teil dieser Flächen eine Rolle, da alternativ die Möglichkeit zur Versickerung besteht. Es werden vermutlich vor allem die Straßen im Kanalsystem entwässert, deren Umgebung keine Möglichkeit zur Versickerung bietet. Dies trifft auf diejenigen Flächen zu, die innerhalb von Siedlungsflächen liegen. In dieser Arbeit sollte daher abhängig vom Anteil der Siedlungs- und Verkehrsfläche an der

Es hat sich gezeigt, dass bei steigendem Anteil der Siedlungs- und Verkehrsfläche an der Gesamtfläche auch der innerhalb der Siedlungsflächen liegende Anteil der Straßenlänge steigt. Die Ergebnisse für die 12 untersuchten Gemeinden im Landkreis Osnabrück sind in der folgenden Abbildung gezeigt:

7.2 Anhang B

7.2.1 Verschiedene Ablaufraten für die Emissionen von Straßen

<table>
<thead>
<tr>
<th>Literature</th>
<th>Road/ADTI</th>
<th>Zinc load in runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balades et al., 1984</td>
<td>A4 Paris/Strasbourg</td>
<td>1.23 kg/km.y</td>
</tr>
<tr>
<td>France</td>
<td>5,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A61 Bordeaux</td>
<td>1.48 kg/km.y</td>
</tr>
<tr>
<td></td>
<td>7,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 reference</td>
<td>2.3 kg/km.y</td>
</tr>
<tr>
<td></td>
<td>13,600</td>
<td></td>
</tr>
<tr>
<td>Chiu et al., 1982</td>
<td>I-5 Urban/Resid</td>
<td>2.32 kg/ha.y</td>
</tr>
<tr>
<td>US</td>
<td>57,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5</td>
<td>2.84 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>47,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR-520 Urban</td>
<td>4.21 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vancouver suburban</td>
<td>0.22 kg/ha.y *</td>
</tr>
<tr>
<td></td>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snoqualmie Pass</td>
<td>2.01 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>8,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montesana coast/agric</td>
<td>2.56 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>11,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasco agric.</td>
<td>0.47 kg/ha.y *</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spokane volcanic</td>
<td>10.4 kg/ha.y **</td>
</tr>
<tr>
<td></td>
<td>17,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pullman-9 agric.</td>
<td>0.39 kg/ha.y *</td>
</tr>
<tr>
<td></td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>Colwill et al., 1984</td>
<td>M1 London/Bedfordshire</td>
<td>5.7 kg/ha.y</td>
</tr>
<tr>
<td>UK</td>
<td>25-40,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M6 Birmingham</td>
<td>18 kg/ha.y **</td>
</tr>
<tr>
<td></td>
<td>N1 Zurich</td>
<td>1.35 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>US av of six sites</td>
<td>2 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>A1/A2 France</td>
<td>1.7 kg/ha.y</td>
</tr>
<tr>
<td>Dannecker et al., 1990</td>
<td>Troughfare 16,200</td>
<td>1.17 kg/ha</td>
</tr>
<tr>
<td>Germany</td>
<td>Industrial 2,300</td>
<td>1.16 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>Residential 500</td>
<td>0.81 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>< 30 km/h</td>
<td></td>
</tr>
<tr>
<td>Muschack, 1989</td>
<td>Hildesheim/Marienburger hohe</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>10,000 traffic lights</td>
<td>2.7 kg/ha.y</td>
</tr>
<tr>
<td>Stotz, 1987</td>
<td>A81 41,000</td>
<td>2.53 kg/ha.y</td>
</tr>
<tr>
<td>Germany</td>
<td>A6 47,000</td>
<td>4.01 kg/ha.y</td>
</tr>
<tr>
<td></td>
<td>A8/B10 40,600</td>
<td>2.04 kg/ha.y</td>
</tr>
<tr>
<td>Wijers et al., 1994-1993,</td>
<td>A9 47,000 Akersloot</td>
<td>0.5 kg/ha.y ***</td>
</tr>
<tr>
<td>1992, 1991a and b, 1990</td>
<td>A9 74,000 Badhoevedorp</td>
<td>2.6 kg/ha.y</td>
</tr>
<tr>
<td>and Keeken et al., 1989a</td>
<td>A58 21,000 Krabbendijke</td>
<td>2.48 ha.y</td>
</tr>
<tr>
<td>and b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Typical for low traffic density and low ambient air born pollution

** Extremely high ambient air born pollution.

According to [*Piat per comm*](#) the area around Birmingham contains heavy industry with many steel works and about 18 big galvanising plants that were emitting dust to the air without any filtration at that time. Vulcanic ashes were recently deposited at Spokane.

*** Measured in a relatively dry period.
7.2.2 Talsperren und Stauseen im Ruhreinzugsgebiet

<table>
<thead>
<tr>
<th>Talsperren und Stauseen</th>
<th>Gestautes Gewässer</th>
<th>Stauinhalt in Mio. m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talsperren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuelbecker</td>
<td>Fuelbecke</td>
<td>0,7</td>
</tr>
<tr>
<td>Heilenbecker</td>
<td>Heilenbecke</td>
<td>0,45</td>
</tr>
<tr>
<td>Ennepe</td>
<td>Ennepe</td>
<td>12,5</td>
</tr>
<tr>
<td>Fürwigge</td>
<td>Verse</td>
<td>1,67</td>
</tr>
<tr>
<td>Glör</td>
<td>Glör</td>
<td>2,1</td>
</tr>
<tr>
<td>Hasper</td>
<td>Hasper Bach</td>
<td>2,05</td>
</tr>
<tr>
<td>Jubach</td>
<td>Jubach</td>
<td>1,05</td>
</tr>
<tr>
<td>Möhne</td>
<td>Möhne</td>
<td>134,5</td>
</tr>
<tr>
<td>Sorpe</td>
<td>Sorpe</td>
<td>70</td>
</tr>
<tr>
<td>Verse</td>
<td>Verse</td>
<td>32,8</td>
</tr>
<tr>
<td>Henne</td>
<td>Henne</td>
<td>38,4</td>
</tr>
<tr>
<td>Bigge mit Lister</td>
<td>Bigge und Lister</td>
<td>171,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stauseen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengstey</td>
<td>Ruhr</td>
<td>3,25</td>
</tr>
<tr>
<td>Harkort</td>
<td>Ruhr</td>
<td>3,2</td>
</tr>
<tr>
<td>Baldeney</td>
<td>Ruhr</td>
<td>8,5</td>
</tr>
<tr>
<td>Ahhausen</td>
<td>Bigge</td>
<td>2,1</td>
</tr>
<tr>
<td>Echthausen</td>
<td>Ruhr</td>
<td>0,52</td>
</tr>
<tr>
<td>Kettwig</td>
<td>Ruhr</td>
<td>1,4</td>
</tr>
<tr>
<td>Kemnader</td>
<td>Ruhr</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Tabelle 7.2: Talsperren und Stauseen im Ruhreinzugsgebiet [24]
Beiträge des Instituts für Umweltsystemforschung der Universität Osnabrück

Die Beiträge können gegen einen Selbstkostenpreis (ca. 10 EUR pro Exemplar) beim Institut für Umweltystemforschung, Universität Osnabrück, 49069 Osnabrück bestellt werden.
Alle folgenden Beiträge sind herunterzuladen unter http://www.usf.uos.de/usf/beiträge/.

34. Jens Newig, Oliver Fritsch (Hrsg.): Effektivität von Beteiligungsprozessen. Mai 2006.

